Skip to main content
Log in

Spatial design of groundwater quality monitoring network using multicriteria analysis based on pollution risk map

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater quality monitoring is a fundamental part of water management in aquifers. It is necessary to measure the spatial and temporal variations of the parameters related to the quality of groundwater, to have the necessary data for the management of the resource. In this sense, the objective of this research was to design a groundwater quality monitoring network in the Texcoco aquifer (Central Mexico), analyzing the spatial criteria that influence the design of networks, through multicriteria analysis in a GIS environment. The selected criteria were groundwater pollution risk, groundwater level drawdown, density of wells and subsidence. The analytical hierarchy process (AHP) was applied for the weighting of factors (criteria). The weighted sum tool of the ArcGis software was used to create the map of priority monitoring areas. Subsequently, a proposal for a groundwater quality monitoring network was made, and the spatial distribution and density of the monitoring points were determined. Finally, the temporality of the samplings and the parameters to be studied were proposed. The information obtained with this network will help decision-makers to establish and improve strategies for the protection, conservation, and uses of water resources based on available information and easily tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The detailed data can be consulted in the Master´s Thesis of Karina Patoni. Availability at: http://hdl.handle.net/20.500.11799/112143.

References

  • AEMA (2011) Proposed groundwater monitoring network. European Environment Agency. https://www.eea.europa.eu/publications/92-9167-023-5/page013.html

  • Amiri H, Azadi S, Javadpour S, Naghavi A, Boczkaj G (2022) Selecting wells for an optimal design of groundwater monitoring network based on monitoring priority map: a Kish Island case study. Water Resour Ind 27:100172. https://doi.org/10.1016/j.wri.2022.100172

    Article  CAS  Google Scholar 

  • APHA-AWWA-WPCF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association American Water Works Association and Water Pollution Control Federation, Washington DC

    Google Scholar 

  • Arce J, Layer P, Luis Macías J, Morales Casique E, García-Palomo A, Jiménez Domínguez F, Benowitz J, Vásquez Serrano A (2019) Geology and stratigraphy of the Mexico Basin (Mexico City), Central Trans-Mexican Volcanic Belt. J Maps 15(2):320–332. https://doi.org/10.1080/17445647.2019.1593251

    Article  Google Scholar 

  • Auge M (2006) Métodos y Técnicas para el Monitoreo de Acuíferos. Reporte Interno, Universidad de Buenos Aires, Departamento de Hidrogeología. http://tierra.rediris.es/hidrored/ebooks/miguel/Monitoreo.pdf

  • Auvinet G, Méndez E, Juárez M, Hernández F, Martínez O (2014) Avances sobre el agrietamiento del suelo asociado al hundimiento regional en el Valle de México. Instituto de Ingeniería, UNAM, Sociedad Mexicana de Ingeniería Geotécnica AC

  • Auvinet G, Méndez E, Juárez M (2017) El subsuelo en la Ciudad de México III, vol 3. Instituto de Ingeniería, UNAM, México

    Google Scholar 

  • Briseño-Ruiz J, Herrera Zamarrón G, Júnez Ferreira H (2011) Método para el diseño óptimo de redes de monitoreo de los niveles del agua subterránea. Tecnología y Ciencias Del Agua 2(4):77–96

    Google Scholar 

  • Chakraborty A, Prakash O (2022) Optimal monitoring locations for identification of ambivalent characteristics of groundwater pollution sources. Environ Monit Assess 194:664. https://doi.org/10.1007/s10661-022-10313-3

    Article  Google Scholar 

  • CONAGUA (2005) Proyecto Lago de Texcoco. Rescate Hidroecológico. Gerencia Regional de Aguas del Valle de México y Sistema Cutzamala. Gerencia Lago de Texcoco

  • CONAGUA (2018) Actualización de la disponibilidad media anual de agua en el acuífero Texcoco (1507), Estado de México. Ciudad de México. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/edomex/DR_1507.pdf

  • CONAGUA-Ariel Consultores (2007) Estudio hidrogeoquímico, así como de evolución de la calidad del agua subterránea en la Cuenca del Valle de México, año 2007. CONAGUA, Organismo de Cuenca Aguas del Valle de México Dirección Técnica. Internal Report

  • CONAGUA-Proyectos y Servicios (2006) Estudio de modelación para determinar el comportamiento del acuífero Texcoco (1507). Internal Report

  • Dávila-Pórcel R, De León-Gómez H (2011) Importancia de la hidrogeología Urbana; ciencia clave para el desarrollo urbano sostenible. Boletín De La Sociedad Geológica Mexicana 63(3):463–477. https://doi.org/10.18268/BSGM2011v63n3a8

    Article  Google Scholar 

  • DGA (2019) Criterios para implementación de redes de monitoreo de aguas subterráneas. Gobierno de Chile, Dirección General de Aguas. Santiago de Chile: División de Estudios y Planificación

  • DOF (2022) NOM-127-SSA1-2021 Agua para uso y consumo humano. Límites permisibles de la calidad del agua. Diario Oficial de la Federación (DOF) SSA-2021

  • Ekanem AM (2022) AVI-and GOD-based vulnerability assessment of aquifer units: a case study of parts of Akwa Ibom State, Southern Niger Delta Nigeria. Sustain Water Resour Manag 8(1):29

    Article  Google Scholar 

  • Esquivel-Martínez JM, Morales Reyes GP, Esteller Alberich MV (2015) Groundwater monitoring network design using GIS and multicriteria analysis. Water Resour Manag 29:3175–3194. https://doi.org/10.1007/s11269-015-0989-8

    Article  Google Scholar 

  • Esquivel-Martínez JM, Expósito-Castillo JL, Esteller-Alberich MV, Gómez-Albores MÁ, Medina-Rivas CM, Fonseca-Ortiz CR (2022) Prioritization of areas for groundwater monitoring using analytic hierarchy process method in Geographic Information Systems: a case of Mexico. Int J Environ Sci Technol 20:5965–5982. https://doi.org/10.1007/s13762-022-04383-6

    Article  Google Scholar 

  • Esri (2020). ArcMap. https://www.desktop.arcgis.com/es/arcmap/1.0.4/tools/spatial-analyst-toolbox/how-weighted-sum-works.htm

  • Farlin J, Gallé T, Pittois D, Bayerle M, Schaul T (2019) Groundwater quality monitoring network design and optimisation based on measured pollutant concentration and taking solute transit time into account. J Hydrol 573:516–523. https://doi.org/10.1016/j.jhydrol.2019.01.067

    Article  CAS  Google Scholar 

  • Foster S, Hirata R, Gomes D, D’Elía M, París M (2002) Groundwater Quality Protection: A Guide for Water Utilities, Municipal Authorities, and Environment Agencies. Washington, DC: World Bank. http://hdl.handle.net/10986/13843

  • Ghazavi R, Ebrahimi Z (2015) Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int J Environ Sci Technol 12:2909–2918

    Article  CAS  Google Scholar 

  • Gómez Evangelista B (2016) Lago de Texcoco: consecuencias de impacto ambiental. TEPEXI Boletín Científico De La Escuela Superior Tepeji Del Río 3(6):4–7. https://doi.org/10.29057/estr.v3i6.372

    Article  Google Scholar 

  • González-Torres E, Morán Zenteno D, Mori L, Martiny B (2015) Revisión de los últimos eventos magmáticos del Cenozoico del sector norte-central de la Sierra Madre del Sur y su posible conexión con el subsuelo profundo de la Cuenca de México. Boletín De La Sociedad Geológica Mexicana 67(2):285–297

    Article  Google Scholar 

  • Huizar-Álvarez R, Carrillo-Rivera J, Ángeles-Serrano G, Hergt T, Cardona A (2004) Chemical response to groundwater extraction southeast of Mexico City. Hydrogeol J 12:436–450. https://doi.org/10.1007/s10040-004-0343-3

    Article  CAS  Google Scholar 

  • INEGI (2018) Biblioteca digital de mapas. Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/app/mapas/?tg=1015

  • INEGI (2020) Censo de población y vivienda 2020. Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/programas/ccpv/2020/

  • Jia R, Wu J, Zhang Y, Luo Z (2022) Site prioritization and performance assessment of groundwater monitoring network by using information-based methodology. Environ Res 212(Part A):113181. https://doi.org/10.1016/j.envres.2022.113181

    Article  CAS  Google Scholar 

  • Júnez-Ferreira H, González J, Reyes E, Herrera G (2016a) A Geostatistical methodology to evaluate the performance of groundwater quality monitoring networks using a vulnerability index. Math Geosci 48:25–44. https://doi.org/10.1007/s11004-015-9613-y

    Article  Google Scholar 

  • Júnez-Ferreira H, Herrera G, González Hita L, Cardona A, Mora Rodríguez J (2016b) Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer. Environ Monit Assess 188:39. https://doi.org/10.1007/s10661-015-5036-y

    Article  Google Scholar 

  • Mahmoudpour H, Janatrostami S, Ashrafzadeh A (2023) Optimal design of groundwater quality monitoring network using aquifer vulnerability map. Water Resour Manag 37:797–818. https://doi.org/10.1007/s11269-022-03404-w

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New York

    Google Scholar 

  • Malczewski J, Rinner C (2015) Multicriteria decision analysis in geographic information science. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74757-4

    Book  Google Scholar 

  • Martín-del-Campo M, Esteller Alberich M, Expósito Castillo J, Hirata R (2014) Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environ Monit Assess 186(5):2979–2999. https://doi.org/10.1007/s10661-013-3595-3

    Article  CAS  Google Scholar 

  • Mendoza-Archundia E (2012) Caracterización hidrogeológica de la porción sureste de la planicie de Texcoco, México, para establecer sitos de recarga artificial al acuífero. Thesis, Universidad Nacional Autónoma de México, Facultad de Ingeniería, México

  • Misstear B, Banks D (2016) Groundwater monitoring: the importance of setting clear monitoring objectives based on an appreciation of the hydrogeology Conference: Proceedings of the International Association of Hydrogeologists (Irish Group) 26th Annual Groundwater Conference Volume: Session IV, Paper 4.1

  • Prado-Hernández J, Hernández Jaimes Z, Téllez Pulido Ó, Carrillo García M, Gutiérrez Carrillo N, Vázquez Alarcón A (2017) Water quality for human consumption and agricultural use of some wells in the Texcoco aquifer (1507). SABE (American Society of Agricultural and Biological Engineers). Paper Number: 1700171, 1–8. https://doi.org/10.13031/aim.201700171

  • Preziosi E, Petrangeli A, Giuliano G (2013) Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design. Environ Monit Assess 185:3759–3781. https://doi.org/10.1007/s10661-012-2826-3

    Article  CAS  Google Scholar 

  • Rahmati O, Nazari Samani A, Mahdavi M, Reza Pourghasemi H, Zeinivand H (2015) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci 8(9):7059–7071. https://doi.org/10.1007/s12517-014-1668-4

    Article  Google Scholar 

  • Ramos-Leal J, Barrón Romero L, Sandoval Montes I (2004) Combined use of aquifer pollution risk maps and pollution indexes in the design of water quality monitoring networks in Mexico. Geofísica Internacional 43(4):641–650

    Article  Google Scholar 

  • Rentier C, Delloye F, Brouyere S, Dassargues A (2006) A framework for an optimised groundwater monitoring network and aggregated indicator. Environ Earth Sci 50:94–201. https://doi.org/10.1007/s00254-006-0200-x

    Article  CAS  Google Scholar 

  • REPDA (2019) Registro Público de Derechos de Agua. https://app.conagua.gob.mx/ConsultaRepda.aspx

  • Rivett M, Miller A, MacAllister D, Fallas A, Wanangwa G, Mleta P, Phiri P, Mannix N, Monjerezi M, Kalin R (2018) A conceptual model based framework for pragmatic groundwater-quality monitoring network design in the developing world: application to the Chikwawa District, Malawi. Groundw Sustain Dev 6:213–226. https://doi.org/10.1016/j.gsd.2018.01.005

    Article  Google Scholar 

  • Rodríguez-Barrón ME (2010) Caracterización Geoestadística del subsuelo del ex-lago de Texcoco. Thesis. Instituto Politécnico Nacional, México

  • Saaty T (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26. https://doi.org/10.1016/0377-2217(90)90057-I

    Article  Google Scholar 

  • Sánchez-Hernández J (2013) Redes de monitoreo del agua subterránea en el Acuífero del Valle de Toluca. Propuesta de su distribución espacial mediante el manejo de factores hidrogeológicos, ambientales y socioeconómicos. Thesis, Universidad Autónoma del Estado de México

  • Sheikhy-Narany T, Firuz Ramli M, Fakharian K, Zaharin Aris A, Azmin Sulaiman W (2015) Multi-objective based approach for groundwater quality monitoring network optimization. Water Resour Manag 29:5141–5156. https://doi.org/10.1007/s11269-015-1109-5

    Article  Google Scholar 

  • Suárez-Romero P (2019) Modelo matemático de flujo del acuífero de Texcoco, como una herramienta de gestión y planificación hídrica para el desarrollo sustentable de la región. Thesis, Universidad Nacional Autónoma de México, México

  • Taheri K, Missimer T, Amini V, Bahrami J, Omidipour R (2020) A GIS-expert-based approach for groundwater quality monitoring network design in an alluvial aquifer: a case study and a practical guide. Environ Monit Assess 192(684):2–19. https://doi.org/10.1007/s10661-020-08646-y

    Article  Google Scholar 

  • Tuinhof A, Foster S, Kemper K, Garduño H, Nanni M (2004) Groundwater monitoring requirements for managing aquifer response and quality threats. Washington D.C., EE. UU.: GW-MATE. https://documents1.worldbank.org/curated/en/334871468143053052/pdf/301070BriefingNote9.pdf

  • Vrba J, Zaporozec A (Eds) (1994) Guidebook on mapping groundwater vulnerability (Vol. 16, pp. 1–131). AIH - Hannover: Heise

  • Wu S, Ke K, Lin H, Tan Y (2017) Optimization of groundwater quality monitoring network using risk assessment and geostatistic approach. Water Resour Manag 31:515–530. https://doi.org/10.1007/s11269-016-1545-x

    Article  Google Scholar 

  • Zhang Y, Pinder G, Herrera G (2005) Least cost design of groundwater quality monitoring networks. Water Resour Res. https://doi.org/10.1029/2005WR003936

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of the Comisión Nacional del Agua (CONAGUA) and the Instituto Interamericano de Tecnología del Agua (IITCA) for their comments and suggestions. This research was funded by Consejo Mexiquense de Ciencia y Tecnología, (Grant: FICDTEM-2021-004). K Patoni thanks CONACYT for its Ms. Scholarship. The authors appreciate the critical review and constructive comments provided by the editors and reviewers, which helped substantially in improving the quality of the manuscript.

Funding

The authors would like to thank the Consejo Mexiquense de Ciencia y Tecnología (COMECYT), the funding of research (Grant FICDTEM-2021–004). Author K. Patoni has received research support from Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT) de México.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, and data collection were performed by Karina Patoni and Maria Vicenta Esteller. Data analysis was performed by Karina Patoni, Maria Vicenta Esteller, José Luis Exposito, and Reyna María Guadalupe Fonseca. The first draft of the manuscript was written by Maria Vicenta Esteller and Karina Patoni and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maria Vicenta Esteller.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patoni, K., Esteller, M.V., Expósito, J.L. et al. Spatial design of groundwater quality monitoring network using multicriteria analysis based on pollution risk map. Environ Earth Sci 83, 286 (2024). https://doi.org/10.1007/s12665-024-11595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11595-1

Keywords

Navigation