Skip to main content
Log in

The progress and trend of Microbially Induced Carbonate Precipitation (MICP) research: a bibliometric analysis

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Microbially Induced Carbonate Precipitation (MICP) has emerged as a significant technology in the domains of energy conservation, environmental protection, and sustainable ecology, witnessing rapid advancements in recent years. Therefore, it is very important to understand the knowledge structure and development of this field comprehensively and systematically. Employing the bibliometric visualization tool CiteSpace, this study analyzes 1935 academic articles and reviews sourced from the core collection of the Web of Science (WOS) database. The analysis primarily encompasses collaboration networks, keyword co-occurrence, co-citation analysis, and cluster analysis. The results show that: (1) there are still many isolated nodes in authors, institutional and national networks, indicating that cooperation in this field continues to strengthen; (2) Hot topics include: bacteria, cementation, improvement, soil, sand and biomineralization, etc., which are high-frequency keywords in this field. In addition, terms such as biofilm, chemistry, calcification, and cementitious material emerge as highly influential keywords, reflecting the research hotspots in this field. (3) The co-citation analysis reveals interconnected topics in this field, such as biocemented sand, microbial-induced precipitation, engineered applications, microbial diversity, and self-healing concrete, these topics are current research hotspots. This paper is intended to serve as a comprehensive theoretical and practical resource for guiding future research in the MICP domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Some or all data used are available from the corresponding author on reasonable request.

References

  • Achal V, Mukherjee A (2015) A review of microbial precipitation for sustainable construction. Constr Build Mater 93:1224–1235

    Article  Google Scholar 

  • Achal V, Pan XL (2014) Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl Biochem Biotechnol 173(1):307–317

    Article  Google Scholar 

  • Achal V, Pan XL, Fu QL, Zhang DY (2012a) Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184

    Article  Google Scholar 

  • Achal V, Pan XL, Zhang DY (2012b) Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89(6):764–768

    Article  Google Scholar 

  • Achal V, Pan XL, Zhang DY, Fu QL (2012c) Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol 22(2):244–247

    Article  Google Scholar 

  • Achal V, Mukerjee A, Sudhakara Reddy M (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5

    Article  Google Scholar 

  • Al Qabany A, Soga K (2013) Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique 63(4):331–339

    Article  Google Scholar 

  • Al Qabany A, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001

    Article  Google Scholar 

  • Algaifi HA, Bakar SA, Sam ARM, Ismail M, Abidin ARZ, Shahir S, ltowayti WAH, (2020) Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete. Constr Build Mater 254:119258

    Article  Google Scholar 

  • Anbu P, Kang CH, Shin YJ, So JS (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications, vol 5. Springerplus, New York

    Google Scholar 

  • Arp G, Helms G, Karlinska K, Schumann G, Reimer A, Reitner J, Trichet J (2012) Photosynthesis versus exopolymer degradation in the formation of microbialites on the Atoll of Kiritimati, Republic of Kiribati. Central Pacific Geomicrobiol J 29(1):29–65

    Article  Google Scholar 

  • Arpajirakul S, Pungrasmi W, Likitlersuang S (2021) Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Constr Build Mater 282(3):122722

    Article  Google Scholar 

  • Bu CM, Lu XY, Zhu DX, Liu L, Sun Y (2022) Soil improvement by microbially induced calcite precipitation (MICP): a review about mineralization mechanism, factors, and soil properties. Arab J Geosci 15(9):863

    Article  Google Scholar 

  • Chen CM (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. JASIS 57(3):359–377

    Article  Google Scholar 

  • Chen CM (2017) Science mapping: a systematic review of the literature. J Data Inf Sci 2(2):1–40

    Google Scholar 

  • Chen CM, Hu ZG, Liu SB, Tseng H (2013) Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther 12(5):593–608

    Article  Google Scholar 

  • Chen CM, Ibekwe Sanjuan F, Hou JH (2014a) The structure and dynamics of co-citation clusters: a multiple-perspective co-citation analysis. J Am Soc Inf Sci Technol 61(7):1386–1409

    Article  Google Scholar 

  • Chen DM, Mi J, Chu PF et al (2014b) Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landsc Ecol 30(9):1669–1682

    Article  Google Scholar 

  • Chen D, Liu Z, Luo ZH, Webber M, Chen J (2016) Bibliometric and visualized analysis of emergy research. Ecol Eng 90:285–293

    Article  Google Scholar 

  • Cheng L, Shahin MA, Mujah D (2017) Influence of key environmental conditions on microbially induced cementation for soil stabilization. J Geotech Geoenviron Eng 143(1):04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586

    Article  Google Scholar 

  • Cheng L, Shahin MA, Chu J (2018) Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech 14(3):615–626

    Article  Google Scholar 

  • Choi SG, Wang KJ, Chu J (2016a) Properties of biocemented, fiber reinforced sand. Constr Build Mater 120:623–629

    Article  Google Scholar 

  • Choi SG, Wu SF, Chu J (2016b) Biocementation for sand using an eggshell as calcium source. J Geotech Geoenviron Eng 142(10):06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534

    Article  Google Scholar 

  • Choi SG, Chu J, Brown RC, Wang KJ, Wen ZY (2017a) Sustainable biocement production via microbially-induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass. Acs Sustainable Chemistry 5(6):5183–5190

    Article  Google Scholar 

  • Choi SG, Park SS, Wu SF, Chu J (2017b) Methods for calcium carbonate content measurement of biocemented soils. J Mater Civ Eng 29(11):06017015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064

    Article  Google Scholar 

  • Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu HL (2013) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9(2):277–285

    Article  Google Scholar 

  • Chuo SC, Mohamed SF, Setapar SHM et al (2020) Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials 13(21):4993

    Article  Google Scholar 

  • Coman C, Chiriac CM, Robeson MS et al (2015) Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania. Front Microbiol 6:253

    Article  Google Scholar 

  • Couradeau E, Benzerara K, Gerard E et al (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336(6080):459–462

    Article  Google Scholar 

  • Cui MJ, Zheng JJ, Zhang RJ, Lai HJ, Zhang J (2017) Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech 12(5):971–986

    Article  Google Scholar 

  • De Jong JT, Mortensen B, Martinez B (2007) Bio-soils interdisciplinary science and engineering initiative final report on workshop, vol 84. National Science Foundation, Alexandria

    Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136

    Article  Google Scholar 

  • DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210

    Article  Google Scholar 

  • DeJong JT, Soga K, Kavazanjian E et al (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Géotechnique 63(4):287–301

    Article  Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2013a) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314

    Article  Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2013b) Bionnineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314

    Article  Google Scholar 

  • Dilrukshi RAN, Nakashima K, Kawasaki S (2018) Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soils Found 58(4):894–910

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96(3):141–162

    Article  Google Scholar 

  • Fan YJ, Hu XM, Zhao YY, Wu MY, Wang SM, Wang PY, Xue Y, Zhu SC (2020) Urease producing microorganisms for coal dust suppression isolated from coal: characterization and comparative study. Adv Powder Technol 31(9):4095–4106

    Article  Google Scholar 

  • Fe Rris FG, Stehmeler LG, Kantzas A, Mouritis FM (1996) Bacteriogenic mineral plugging. J Can Petrol Technol 35(8):56–61

    Google Scholar 

  • Feng K, Montoya BM (2016) Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. J Geotech Geoenviron Eng 142(1):04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379

    Article  Google Scholar 

  • Fujita M, Nakashima K, Achal V, Kawasaki S (2017) Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock. Biochem Eng J 124:1–5

    Article  Google Scholar 

  • Gallagher KL, Kading TJ, Braissant O, Dupraz C, Visscher PT (2012) Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology 10(6):518–530

    Article  Google Scholar 

  • Gomez MG, Anderson CM, Graddy CMR, DeJong JT, Nelson DC, Ginn TR (2017) Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands. J Geotech Geoenviron Eng 143(5):04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640

    Article  Google Scholar 

  • Gowthaman S, Iki T, Nakashima K, Ebina K, Kawasaki S (2019a) Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (MICP) using indigenous bacteria isolated from cold subarctic region. SN Appl Sci 1:1–16. https://doi.org/10.1007/s42452-019-1508-y

    Article  Google Scholar 

  • Gowthaman S, Mitsuyama S, Nakashima K, Komatsu M, Kawasaki S (2019b) Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: a feasibility study on Hokkaido expressway soil. Jpn Soils Found 59(2):484–499

    Article  Google Scholar 

  • Gowthaman S, Nakashima K, Kawasaki S (2020) Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation. Soils Found 60(4):840–855

    Article  Google Scholar 

  • Harkes MP, Van Paassen LA, Booster JL, Whiffin VS, Van Loosdrecht MC (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36(2):112–117

    Article  Google Scholar 

  • Jiang NJ, Soga K (2017) The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Geotechnique 67(1):42–55

    Article  Google Scholar 

  • Jiang NJ, Soga K, Kuo M (2017) Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures. J Geotech Geoenviron Eng 143(3):04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559

    Article  Google Scholar 

  • Jiang NJ, Liu R, Du YJ, Bi YZ (2019) Microbial induced carbonate precipitation for immobilizing Pb contaminants: toxic effects on bacterial activity and immobilization efficiency. Sci Total Environ 672:722–731

    Article  Google Scholar 

  • Jiang NJ, Wang YJ, Chu J et al (2021) Bio-mediated soil improvement: an introspection into processes, materials, characterization and applications. Soil Use Manag 38(1):68–93

    Article  Google Scholar 

  • Joshi S, Goyal S, Mukherjee A, Reddy MS (2017) Microbial healing of cracks in concrete: a review. J Ind Microbiol Biotechnol 44(11):1511–1525

    Article  Google Scholar 

  • Kamennaya N, Ajo-Franklin C, Northen T, Jansson C (2012) Cyanobacteria as biocatalysts for carbonate mineralization. Minerals 2(4):338–364

    Article  Google Scholar 

  • Khan MNH, Amarakoon GGNN, Shimazaki S, Kawasaki S (2015) Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria. Mater Trans 56(10):1725–1732

    Article  Google Scholar 

  • Kumari D, Pan X, Lee DJ, Achal V (2014) Immobilization of cadmium in soil by microbially induced carbonate precipitation with exiguobacterium undae at low temperature. Int Biodeterior Biodegr 94:98–102

    Article  Google Scholar 

  • Kumari D, Qian XY, Pan XL, Achal V, Li QW, Gadd GM (2016) Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv Appl Microbiol 94:79–108

    Article  Google Scholar 

  • Li J, Chen CM (2016) CiteSpace: text mining and visualization in scientific literature. Capital University of Economics and Business Press, Beijing, pp 149–152

    Google Scholar 

  • Li MM, Fu QL, Zhang QZ, Achal V, Kawasaki S (2015) Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci Rep 5:16128

    Article  Google Scholar 

  • Li MD, Li L, Ogbonnaya U, Wen KJ, Tian AG, Amini F (2016) Influence of fiber addition on mechanical properties of MICP-treated sand. J Mater Civ Eng 28(4): 04015166 https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442

    Article  Google Scholar 

  • Li MM, Fang CL, Kawasaki S, Achal V (2018) Fly ash incorporated with biocement to improve strength of expansive soil. Sci Rep 8(1):2565

    Article  Google Scholar 

  • Liang SH, Chen JT, Niu JG, Gong X, Feng DL (2020) Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Mar Georesour Geotechnol 38(4):393–399

    Article  Google Scholar 

  • Lin H, Suleiman MT, Brown DG, Kavazanjian E (2016) Mechanical behavior of sands treated by microbially induced carbonate precipitation. J Geotech Geoenviron Eng 142(2):04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383

    Article  Google Scholar 

  • Ling H, Qian CX (2017) Effects of self-healing cracks in bacterial concrete on the transmission of chloride during electromigration. Constr Build Mater 144:406–411

    Article  Google Scholar 

  • Liu B, Zhu C, Tang CS et al (2020) Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng Geol 264:105389

    Article  Google Scholar 

  • Martinez BC, DeJong JT, Ginn TR et al (2013) Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J Geotech Geoenviron Eng 139(4):587–598

    Article  Google Scholar 

  • Me´tayer-Levrel GL, Castanier S, Orial G, Loubie´re JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. SedG 126(1–4):25–34

    Google Scholar 

  • Millennium C, Innovation O, Engineering C, Resources B, Studies D, Council N (2006) Geological and geotechnical engineering in the new millennium: opportunities for research and technological innovation. National Academies Press, Washington

    Google Scholar 

  • Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233

    Article  Google Scholar 

  • Montoya BM, DeJong JT (2015) Stress-strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141(6):4015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302

    Article  Google Scholar 

  • Mori D, Uday KV (2021) A review on qualitative interaction among the parameters affecting ureolytic microbial-induced calcite precipitation. Environ Earth Sci 80(8):329. https://doi.org/10.1007/s12665-021-09613-7

    Article  Google Scholar 

  • Mwandira W, Nakashima K, Kawasaki S (2017) Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol Eng 109:57–64

    Article  Google Scholar 

  • Naeimi M, Chu J (2017) Comparison of conventional and bio-treated methods as dust suppressants. Environ Sci Pollut Res 24:23341–23350

    Article  Google Scholar 

  • Naeimi M, Haddad A (2020) Environmental impacts of chemical and microbial grouting. Environ Sci Pollut Res 27:2264–2272

    Article  Google Scholar 

  • Naveed M, Duan J, Uddin S, Suleman M, Hui Y, Li H (2020) Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecol Eng 153(15):105885. https://doi.org/10.1016/j.ecoleng.2020.105885

    Article  Google Scholar 

  • Omoregie AI, Palombo EA, Nissom PM (2021) Bioprecipitation of calcium carbonate mediated by ureolysis: a review. Environ Eng Res. 26(6):200379

    Article  Google Scholar 

  • Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler L (2013a) Engineered applications of ureolytic biomineralization: a review. Biofouling 29(6):715–733

    Article  Google Scholar 

  • Phillips AJ, Lauchnor E, Eldring J, Esposito R, Mitchell AC, Gerlach R, Cunningham AB, Spangler LH (2013b) Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation. Environ Sci Technol 47(1):142–149

    Article  Google Scholar 

  • Qian CX, Yu XN, Wang X (2018) A study on the cementation interface of bio-cement. Mater Charact 136:122–127

    Article  Google Scholar 

  • Qian CX, Zheng TW, Rui YF (2021) Living concrete with self-healing function on cracks attributed to inclusion of microorganisms: theory, technology and engineering applications-a review. Sci China-Technol Sci 64(10):2067–2083

    Article  Google Scholar 

  • Qiu JS, Tng DQS, Yang EH (2014) Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr Build Mater 57:144–150

    Article  Google Scholar 

  • Rahman MM, Hora RN, Ahenkorah I, Beecham S, Karim MR, Iqbal A (2020) State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability 12(15):6281

    Article  Google Scholar 

  • Salifu E, MacLachlan E, Iyer KR, Knapp CW, Tarantino A (2016) Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation. Eng Geol 201:96–105

    Article  Google Scholar 

  • Seifan M, Berenjian A (2019) Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Appl Microbiol Biotechnol 103(12):4693–4708

    Article  Google Scholar 

  • Sharma M, Satyam N, Reddy KR (2021) State of the art review of emerging and biogeotechnical methods for liquefaction mitigation in sands. J Hazard Toxic Radioact Waste 25(1):03120002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000557

    Article  Google Scholar 

  • Shiraishi F (2012) Chemical conditions favoring photosynthesis-induced CaCO3 precipitation and implications for microbial carbonate formation in the ancient ocean. Geochim Cosmochim Acta 77:157–174

    Article  Google Scholar 

  • Small H (1973) Co-citation in the scientific literature: a new measure of the relationship between two documents. J Am Soc Inf Sci Technol 24(4):265–269. https://doi.org/10.1002/asi.4630240406

    Article  Google Scholar 

  • Stocks Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571

    Article  Google Scholar 

  • Su YL, Zheng TW, Qian CX (2021) Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete. Constr Build Mater 273:121740

    Article  Google Scholar 

  • Sun XH, Miao LC, Tong TZ, Wang CC (2018) Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotech 14(3):627–638

    Article  Google Scholar 

  • Tang CS, Yin LY, Jiang NJ, Zhu C, Zeng H, Li H, Shi B (2020) Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environ Earth Sci 79:1–23. https://doi.org/10.1007/s12665-020-8840-9

    Article  Google Scholar 

  • Terzis D, Laloui L (2019) A decade of progress and turning points in the understanding of bio-improved soils: a review. Geomech Energy Environ. https://doi.org/10.1016/j.gete.2019.03.001

    Article  Google Scholar 

  • Wang S, Wang XB, Han XG, Deng Y (2018) Higher precipitation strengthens the microbial interactions in semi-arid grassland soils. Glob Ecol Biogeogr 27(5):570–580

    Article  Google Scholar 

  • Whiffin VS (2004) Microbial CaCO3 precipitation for the production of biocement. Murdoch University, Perth

    Google Scholar 

  • Wu MY, Hu XM, Zhang Q, Zhao YY, Sun JH, Cheng WM, Fan YJ, Zhu SC, Lu W, Song CY (2020) Preparation and performance evaluation of environment-friendly biological dust suppressant. J Cleaner Prod. 273:123162

    Article  Google Scholar 

  • Xiao P, Liu HL, Xiao Y, Stuedlein AW, Evans TM (2018) Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn Earthq Eng 107:9–19

    Article  Google Scholar 

  • Xiao Y, Stuedlein AW, Ran JY, Evans TM, Cheng L, Liu HL, van Paassen LA, Chu J (2019) Effect of particle shape on strength and stiffness of biocemented glass beads. J Geotech Geoenviron Eng 145(11):06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165

    Article  Google Scholar 

  • Xiao Y, He X, Wu W, Stuedlein AW, Evans TM, Chu J, Liu HL, van Paassen LA, Wu HR (2021a) Kinetic biomineralization through microfluidic chip tests. Acta Geotech 16(10):3229–3237

    Article  Google Scholar 

  • Xiao Y, Wang Y, Wang S, Evans TM, Stuedlein AW, Chu J, Zhao C, Wu HR, Liu HL (2021b) Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method. Acta Geotech 16(5):1417–1427

    Article  Google Scholar 

  • Xiao Y, Zhang ZC, Stuedlein AW, Evans TM (2021c) Liquefaction modeling for biocemented calcareous sand. J Geotech Geoenviron Eng 147(12):04021149. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002666

    Article  Google Scholar 

  • Yu XN, Qian CX, Xue B (2016) Loose sand particles cemented by different bio-phosphate and carbonate composite cement. Constr Build Mater 113:571–578

    Article  Google Scholar 

  • Zhan QW, Qian CX (2018) Mineralization and cementation of fugitive dust based on the utilization of carbon dioxide and its characterization. J Wuhan Univ Technol-Mater Sci Ed 33(2):263–267

    Article  Google Scholar 

  • Zheng TW, Su YL, Qian CX, Zhou HY (2020a) Low alkali sulpho-aluminate cement encapsulated microbial spores for self-healing cement-based materials. Biochem Eng J 163:107756

    Article  Google Scholar 

  • Zheng TW, Su YL, Zhang X, Zhou HY, Qian CX (2020b) Effect and mechanism of encapsulation-based spores on self-healing concrete at different curing ages. ACS Appl Mater Interfaces 12(47):52415–52432

    Article  Google Scholar 

  • Zheng X, Lu X, Zhou M, Huang W, Zhong Z, Wu X, Zhao B (2022) Experimental study on mechanical properties of root-soil composite reinforced by MICP. Materials 15(10):3586

    Article  Google Scholar 

  • Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4

    Article  Google Scholar 

  • Zhu YJ, Kim MC, Chen CM (2017) An investigation of the intellectual structure of opinion mining research. Inf Res Int Electron J. 22(1):n1

    Google Scholar 

  • Zhu SC, Zhao YY, Hu XM, Wu MY, Cheng WM, Fan YJ, Song CY, Tang XL (2021) Study on preparation and properties of mineral surfactant—microbial dust suppressant. Powder Technol 383:233–243

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation Grant of USA (No. 1924241), the project of Natural Science Foundation of Chongqing municipality (cstc2021jcyj-msxmX0444), the project of scientific and technological research program of Chongqing Municipal Education Commission (KJZD-K202201503).

Author information

Authors and Affiliations

Authors

Contributions

Yongfei Li and Xinyu Lu wrote the main manuscript text and prepared all figures. Shihui Liu provided ideas and discussion for the paper. Changming Bu have revised the whole paper. Lin Li and Changming Bu provided financial support. Beatrice Magombana and Junjie Li have revised the language in the full paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lu, X., Liu, S. et al. The progress and trend of Microbially Induced Carbonate Precipitation (MICP) research: a bibliometric analysis. Environ Earth Sci 82, 567 (2023). https://doi.org/10.1007/s12665-023-11273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11273-8

Keywords

Navigation