Skip to main content

Advertisement

Log in

Predicting land at risk from wind erosion using an index-based framework under a climate change scenario in Durango, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Land degradation takes place primarily in drylands which make up for almost 50% of the cultivated lands, globally. The 90% of Mexican territory is currently experiencing land deterioration mainly due to anthropogenic land use changes and still expecting further deterioration. While efforts have been directed toward the impact of land use changes on wind erosion in dryland ecosystems, there is still high uncertainty on the nature of wind erosion sources. This challenge was addressed by developing and evaluating a method for completing spatial assessments of vulnerable zones currently experiencing accelerated soil erosion and to predict those areas where soil erosion is likely to occur in the near future. This approach is tested over a study area in the Comarca Lagunera, Durango, Mexico. Spatiotemporal patterns and variability in soil erosion and aridity were evaluated, as well as the identification of key characteristics driving soil degradation in the area. Results demonstrate that the suggested methodology can be effectively used to spatially delineate potential locations susceptible to soil degradation (e.g., moderate-risk zones and/or high-risk zones), not only in the present time but also to predict those locations in the near future. This provides the opportunity of spatially defined areas of interest based on specific relationships between edaphological properties and its vulnerability to climate variability. This type of approach could be valuable to identify critical locations that should be treated as a priority for monitoring and managing accelerated soil degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adnan S, Haider S (2012) Classification and assessment of aridity in Pakistan by using different aridity indices. ftp://ftp.wmo.int/Documents/PublicWeb/arep/Weather_Mod_Bali/ENV%20bruntjes.chalon/ENV.Adnan_Pakistan_paper1.pdf. Accessed September 2012

  • Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265(1):164–177

    Article  Google Scholar 

  • Bugmann HKM, Solomon AM (2000) Explaining forest composition and biomass across multiple biogeographical regions. Ecol Appl 10(1):95–114

    Article  Google Scholar 

  • Cavazos T, Salinas JA, Martínez B, Colorado G, de Grau P, Prieto-González R, Conde-Álvarez AC, Quintanar-Isaías A, Santana-Sepúlveda JS, Romero-Centeno R, Maya-Magaña ME, Rosario de La Cruz JG, Ayala-Enríquez MR, Carrillo-Tlazazanatza H, Santiesteban O, Bravo ME (2013) Actualización de escenarios de cambio climático para México como parte de los productos de la quinta comunicación nacional. Informe Final del Proyecto al INECC, México, p 150

    Google Scholar 

  • CONAFOR-UACh (2013) Línea base nacional de degradación de tierras y desertificación. Informe final. Comisión Nacional Forestal. Universidad Autónoma Chapingo. Zapopan, Jalisco, México

  • CONANP (2006) Programa de Conservación y Manejo Reserva de la Biosfera Mapimí. Primera edición. SEMARNAT/CONANP. México, DF. 178 pp. ISBN: 968-817-762-8

  • Conde C, Estrada F, Martínez B, Sánchez O, Gay C (2011) Regional climate change scenarios for México. Atmósfera 24(1):125–140

    Google Scholar 

  • De Martonne E (1926) Aréisme et indice d’aridité. Comptes Rendus de l’Académie des Sciences 182:1395–1398

    Google Scholar 

  • Fernández AE, Zavala JH, Romero RC, Conde ACA, Trejo RIV (2015) Actualización de los escenarios de cambio climático para estudios de impactos, vulnerabilidad y adaptación. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México. Instituto Nacional de Ecología y Cambio climático, Secretaria de Medio Ambiente y Recursos Naturales

  • García E (1973) Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana), Segunda Edición edn. Instituto de Geografía - UNAM, México, p 246

    Google Scholar 

  • García E (2003) Distribución de la precipitación en la República Mexicana. Investigaciones Geográficas 50:67–76

    Article  Google Scholar 

  • García-Páez F, Cruz-Medina IR (2009) Variabilidad de la precipitación pluvial en la región Pacífico norte de México. Agrociencia 43(1):1–9

    Google Scholar 

  • Garrido A, Cotler H (2010) Degradación de suelos en las cuencas hidrográficas de México. In: Cotler H, Garrido A, Luna NG, Enríquez CG, Cuevas MLF (eds) Las cuencas hidrográficas de México, diagnóstico y priorización. Pluralia, México, pp 104–107

    Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys. doi:10.1029/2012RG000388

    Google Scholar 

  • Gnacadja L (2015) New challenges in science and policies to combat desertification. J Arid Environ 112:1–4

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • IMTA (2013) Extractor Rápido de Información Climatológica (ERIC III©) Versión 3.2. Instituto Mexicano de Tecnología del Agua. http://www.imta.gob.mx/productos/software. Accessed June 2015

  • INE (2007) Reserva de la Biosfera de Mapimi. Instituto Nacional de Ecología. http://www2.inecc.gob.mx/publicaciones/libros/2/mapimi.html. Accessed June 2015

  • INEGI (2007) Conjunto de Datos Vectoriales de Edafología Serie II. Instituto Nacional de Estadística y Geografía, Aguascalientes, Ags. México. http://www.inegi.org.mx/geo/contenidos/recnat/edafologia/vectorial_serieii.aspx. Accessed June 2015

  • INEGI (2010) Censo de población y vivienda 2010. Instituto Nacional de Estadística y Geografía, Aguascalientes, Ags. México. http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/cpv2010/Default.aspx. Accessed June 2015

  • INEGI (2014) Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación Serie V. Instituto Nacional de Estadística y Geografía, Aguascalientes, Ags. México. http://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/Default.aspx. Accessed June 2015

  • INEGI (2015) Censos y conteos de población y vivienda. Instituto Nacional de Estadística y Geografía, Aguascalientes, Ags. México. http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/default.aspx. Accessed June 2015

  • IPCC (2013) Climate Change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland

  • Khalili A (1992) Arid and semiarid regions of Iran. In: Proceeding of seminar on the problems of Iranian Deserts and Kavirs, 17–20 May, Yazd, Iran, pp 566–579

  • Kirkby MJ, Morgan RPC (1984) Erosión de suelos. Editorial Limusa. ISBN: 968-18-1699-4

  • Kolb M, Mas JF, Galicia L (2013) Evaluating drivers of land-use change and transition potential models in a complex landscape in Southern Mexico. Int J Geogr Inf Sci 27(9):1804–1827

    Article  Google Scholar 

  • Köppen W (1936) Das geographische system der climate. In: Köppen W, Geiger R (eds) Handbuch der klimatologie, vol 1, part C. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60(9):708–721

    Article  Google Scholar 

  • Liu Y, Dang ZQ, Tian FP, Wang D, Wu GL (2016) Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions (China). Land Degrad Dev. doi:10.1002/ldr.2632

    Google Scholar 

  • López-Santos A, Martínez-Santiago S (2015) Use of two indicators for the socio-environmental risk analysis of Northern Mexico under three climate change scenarios. Air Qual Atmos Health 8(4):331–345

    Article  Google Scholar 

  • López-Santos A, Pinto-Espinoza J, Martinez-Prado MA, Ramírez-López EM (2013) Modeling the potential impact of climate change in northern Mexico using two environmental indicators. Atmósfera 26(4):479–498

    Article  Google Scholar 

  • Magaña V, Zermeño D, Neri C (2012) Climate change scenarios and potential impacts on water availability in northern Mexico. Clim Res 51(2):171–184

    Article  Google Scholar 

  • McBratney A, Field DJ, Koch A (2014) The dimensions of soil security. Geoderma 213:203–213

    Article  Google Scholar 

  • Mercado-Μancera G, Troyo-Diéguez Ε, Aguirre-Gómez A, Murillo-Amador Β, Beltrán-Morales LF, García-Hernández JL (2010) Calibración y aplicación del índice de aridez de De Martonne para el análisis del déficit hídrico como estimador de la aridez y desertificación en zona áridas. Universidad y ciencia 26(1):51–64

    Google Scholar 

  • Monterroso-Rivas AI, Conde-Álvarez AC, Rosales-Dorantes G, Gómez-Díaz JD, Gay-García C (2011) Assessing current and potential rainfed maize suitability under climate change scenarios in Mexico. Atmósfera 24(1):53–67

    Google Scholar 

  • NASA (2015) Shuttle radar topography mission (SRTM), Jet Propulsion Laboratory. National Aeronautics and Space Administration, California Institute of Technology. http://www2.jpl.nasa.gov/srtm/. Accessed June 2016

  • Ortiz-Solorio CA (1987) Elementos de agrometeorología cuantitativa con aplicaciones en la República Mexicana. Departamento de Suelos, Universidad Autónoma Chapingo, Chapingo, p 327

    Google Scholar 

  • Quan C, Han S, Utescher T, Zhang C, Liu YSC (2013) Validation of temperature–precipitation based aridity index: paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 386:86–95

    Article  Google Scholar 

  • Rahimi J, Ebrahimpour M, Khalili A (2013) Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoret Appl Climatol 112(3):409–418

    Article  Google Scholar 

  • Romero-Lankao P, Smith JB, Davidson DJ, Diffenbaugh NS, Kinney PL, Kirshen P, Kovacs P, Villers-Ruiz L, (2014) North America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp 1439–1498

  • Runfola DM, Romero-Lankao P, Jiang L, Hunter LM, Nawrotzki R, Sanchez L (2013) The influence of internal migration on exposure to extreme weather events in Mexico. Society & Natural Resources 29(6):750–754

    Article  Google Scholar 

  • Salinas-Zavala CA, Lluch-Belda D, Hernández-Vázquez S, Lluch-Cota BD (1998) La aridez en el noroeste de México. Un análisis de su variabilidad espacial y temporal. Atmósfera 11:29–44

    Google Scholar 

  • Sánchez-Cohen I, Oswald-Spring U, Díaz-Padilla G, Cerano-Paredes J, Inzunza-Ibarra MA, López-López R, Villanueva-Díaz J (2013) Forced migration, climate change, mitigation and adaptive policies in Mexico: some functional relationships. Int Migr 51(4):53–72

    Article  Google Scholar 

  • SEDESOL-INE (1989) Ordenamiento Ecológico del territorio. Memoria Técnica y Metodológica, México

  • SEMARNAT (2011) Estrategia nacional de manejo sustentable de tierras. Secretaría de Medio Ambiente y Recursos Naturales, México, p 112

    Google Scholar 

  • Stavi I, Lal R (2015) Achieving zero net land degradation: challenges and opportunities. J Arid Environ 112:44–51

    Article  Google Scholar 

  • Tabari H, Talaee PH, Nadoushani SSM, Willems P, Marchetto A (2014) A survey of temperature and precipitation based aridity indices in Iran. Quatern Int 345:158–166

    Article  Google Scholar 

  • Vidal de los Santos E, Franco-López J (2009) Impacto Ambiental: Una herramienta para el desarrollo sustentable. AGT Editor, México

    Google Scholar 

  • Webb NP, Strong CL (2011) Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeol Res 3(2):165–179. doi:10.1016/j.aeolia.2011.03.002

    Article  Google Scholar 

  • Woodward FI, Lomas MR, Kelly CK (2004) Global climate and the distribution of plant biomes. Philos Trans R Soc B Biol Sci 359(1450):1465–1476

    Article  Google Scholar 

  • Wu GL, Wang D, Liu Y, Ding LM, Liu ZH (2016a) Warm-season grazing benefits species diversity conservation and topsoil nutrient sequestration in Alpine Meadow. Land Degrad Dev. doi:10.1002/ldr.2536

    Google Scholar 

  • Wu GL, Wang D, Liu Y, Hao HM, Fang NF, Shi ZH (2016b) Mosaic-pattern vegetation formation and dynamics driven by the water-wind crisscross erosion. J Hydrol 538:355–362

    Article  Google Scholar 

  • Zobeck TM, Baddock MC, Van Pelt RS (2013) Anthropogenic environments. Treatise Geomorphol 11:395–413

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from the United States Department of Agriculture—Agricultural Research Service Unit, Jornada Experimental Range and Univerisad Autonoma Chapingo through the Graduate Program in Recursos Bioticos y Medio Ambiente de Zonas Aridas. We thank Jeffrey E. Herrick for constructive comments on the manuscript. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda S. Galloza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galloza, M.S., López-Santos, A. & Martínez-Santiago, S. Predicting land at risk from wind erosion using an index-based framework under a climate change scenario in Durango, Mexico. Environ Earth Sci 76, 560 (2017). https://doi.org/10.1007/s12665-017-6751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6751-1

Keywords

Navigation