Skip to main content

Advertisement

Log in

Recent sediments of Arctic small lakes (Russia): geochemistry features and age

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The article presents the first data on the study of a wide range of chemical elements in the water and sediments of small lakes located in the Arctic Zone of Russia. Among the selected objects are two lakes located in the urbanized areas. As a result, the sediments of all lakes were classified by the ratio of the main elements and the total content of organic matter. The concentration coefficients of all elements were calculated taking into average concentrations of different elements in the continental crust and the potentially toxic elements in the sediments of the background area. Analyzing sediment cores made it possible to evaluate the historical dynamics of the behavior of some metals and metalloids (Pb, Cd, Sb, Sn, Bi, Ni, Cu) in the aquatic environment during the industrial era, both in urbanized territories and in the background regions of the Arctic. The main natural and anthropogenic factors of the formation of geochemical anomalies in the concentrations of different elements, including potentially toxic ones, in the sediments studied, were identified. In urban areas, the main sources of metals entering the lake environment are emissions of the copper–nickel, thermal power plants, coal port, and an incineration plant. For all lakes, the pollution level of objects was estimated by calculating the geo-accumulation index and pollution load index. The most polluted lakes are the lakes of urban areas of the Arctic, the lakes of the background territories are characterized by a moderate level of pollution or no pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alekin OA (1978) Fundamentals of hydrochemistry. Gidrometeoizdat, Leningrad (in Russian)

    Google Scholar 

  • Bazova MM (2017) Specifics of the elemental composition of waters in environments with operating mining and ore-processing plants in the Kola North. Geochem Int 55:131–143. https://doi.org/10.1134/S0016702917010025

    Article  Google Scholar 

  • Blanchard RL (1966) Rapid determination of lead-210 and polonium-210 in environmental samples by deposition on nickel. Anal Chem 38:189–192. https://doi.org/10.1021/ac60234a010

    Article  Google Scholar 

  • Bränvall ML, Bindler R, Emteryd O, Renberg I (2001) Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. J Paleolimnol 25(4):421–435. https://doi.org/10.1023/A:1011186100081

    Article  Google Scholar 

  • Cooke CA, Abbott MB, Wolfe AP, Kittleson JL (2007) A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes. Environ Sci Technol 41:3469–3474. https://doi.org/10.1021/es062930+

    Article  Google Scholar 

  • Cremer H, Andreev A, Hubberten H-W, Wischer F (2004) Paleolimnological reconstructions of holocene environments and climate from Lake Lyadhej-To, Ural Mountains, Northern Russia. Arct Antarct Alp Res 36(2):147–155. https://doi.org/10.1657/1523-0430(2004)036[0147:PROHEA]2.0.CO;2

    Article  Google Scholar 

  • Dauvalter V (1995) Influence of pollution and acidification on metal concentrations in Finnish Lapland lake sediments. Water Air Soil Pollut 85:853–858. https://doi.org/10.1007/BF00476936

    Article  Google Scholar 

  • Dauvalter V (2000) Assessment of toxicity of metals accumulated in bottom deposits of lakes. Water Resour 27(4):424–431

    Google Scholar 

  • Dauvalter V, Kashulin N (2010) Chalcophile elements (Hg, Cd, Pb, As) in Lake Umbozero, Murmansk Province. Water Resour 37:497–512. https://doi.org/10.1134/S0097807810040093

    Article  Google Scholar 

  • Dauvalter VA, Dauvalter MV, Kashulin NA, Sandimirov SS (2010) Chemical composition of bottom sedimentary deposits in lakes in the zone impacted by atmospheric emissions from the Severonickel plant. Geochem Int 48(11):1148–1153. https://doi.org/10.1134/S0016702910110091

    Article  Google Scholar 

  • Dauvalter VA, Kashulin NA, Denisov DB (2015) Trends in heavy metal content in bottom sediments of lakes in the north of Fennoscandia in recent centuries. Trans Karel Sci Cent Russ Acad Sci 9:62–75 (in Russian)

    Google Scholar 

  • Dauvalter VA, Terentiev PM, Denisov DB, Udachin VN, Filippova KA, Borisov AP (2018) Reconstruction of trace element contamination of the territory of the Rybachy Peninsula, the Murmansk region. Proc Fersman Sci Sess State Inst KSC RAS 15:441–444. https://doi.org/10.31241/FNS.2018.15.112 (in Russian)

    Article  Google Scholar 

  • Delile H, Blichert-Toft J, Goiran J-P, Keay S, Albarède F (2014) Lead in ancient Rome’s city waters. Proc Natl Acad Sci USA 111(18):6594–6599. https://doi.org/10.1073/pnas.1400097111

    Article  Google Scholar 

  • Delile H, Keenan-Jones D, Blichert-Toft J, Goiran JP, Arnaud-Godet F, Albarède F (2017) Rome’s urban history inferred from Pb-contaminated waters trapped in its ancient harbor basins. Proc Natl Acad Sci USA 114(38):10059–10064. https://doi.org/10.1073/pnas.1706334114

    Article  Google Scholar 

  • Demidov IN, Shelekhova TS (2006) Diatomites of Karelia (features of formation, distribution, prospects of use). KarRC RAS, Petrozavodsk (in Russian)

    Google Scholar 

  • Denisov D, Terentjev P, Valkova S, Kudryavtzeva L (2020) Small lakes ecosystems under the impact of non-ferrous metallurgy (Russia, Murmansk region). Environments. https://doi.org/10.3390/environments7040029

    Article  Google Scholar 

  • Escobar J, Whitmore TJ, Kamenov GD, Riedinger-Whitmore MA (2013) Isotope record of anthropogenic lead pollution in lake sediments of Florida, USA. J Paleolimnol 49(2):237–252. https://doi.org/10.1007/s10933-012-9671-9

    Article  Google Scholar 

  • Filatov NN, Kukharev VI (eds) (2013) Lakes of Karelia handbook. Karelian Scientific Center of the Russian Academy of Sciences, Petrozavodsk

    Google Scholar 

  • Filella M, Belzile N, Chen Y-W (2002) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth-Sci Rev 57:125–176. https://doi.org/10.1016/S0012-8252(01)00070-8

    Article  Google Scholar 

  • Ganor E, Altshuller S, Foner HA, Brenner S, Gabbay J (1988) Vanadium and nickel in dustfall as indicators of power plant pollution. Water Air Soil Pollut 42:241–252. https://doi.org/10.1007/BF00279270

    Article  Google Scholar 

  • Gregurek D, Melcher E, Pavlov VA, Reimann C, Stumpfl EF (1999) Mineralogy and mineral chemistry of snow filter residues in the vicinity of the nickel-copper processing industry, Kola Peninsula, NW Russia. Mineral Petrol 65:87–111. https://doi.org/10.1007/BF01161578

    Article  Google Scholar 

  • Hernandez H, Rodriguez R (2002) Geochemical evidence for the origin of vanadium in an urban environment. Environ Monit Assess 184(9):5327–5342. https://doi.org/10.1007/s10661-011-2343-9

    Article  Google Scholar 

  • Hoff U, Biskaborn BK, Dirksen V, Dirksen O, Kuhn G, Meyer H, Nazarova L, Roth A, Diekmann B (2015) Holocene environment of central Kamchatka, Russia: implications from a multi-proxy record of Two-Yurts Lake. Global Planet Change 134:101–117. https://doi.org/10.1016/j.gloplacha.2015.07.011

    Article  Google Scholar 

  • Hosono T, Su CC, Okamura K, Taniguchi M (2010) Historical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan. J Geochem Explor 107:1–8. https://doi.org/10.1016/j.gexplo.2010.05.003

    Article  Google Scholar 

  • Hosono T, Alvarez K, Kuwae M (2016) Lead isotope ratios in six lake sediment cores from Japan Archipelago: historical record of trans-boundary pollution sources. Sci Total Environ 559:24–37. https://doi.org/10.1016/j.scitotenv.2016.03.138

    Article  Google Scholar 

  • Intercomparison 1933 (2019): pH, conductivity, alkalinity, NO3−, N, Cl, SO4, Ca, Mg, Na, K, TOC, total-P, Al, Fe, Mn, Cd, Pb, Cu, Ni, and Zn. ICP Waters Report 141/2019; Report No. 7445-2019. p 78; Norwegian Institute for Water Research: Oslo, Norway

  • Jernström J, Lehto J, Dauvalter VA, Hatakka A, Leskinen A, Paatero J (2010) Heavy metals in bottom sediments of Lake Umbozero in Murmansk region, Russia. Environ Monit Assess 161(1–4):93–105. https://doi.org/10.1007/s10661-008-0730-7

    Article  Google Scholar 

  • Johansson K, Andersson A, Andersson T (1995) Regional accumulation pattern of heavy metals in lake sediments and forest soils in Sweden. Sci Total Environ 160(161):373–380. https://doi.org/10.1016/0048-9697(95)04370-G

    Article  Google Scholar 

  • Kashulin NA, Ratkin NE, Dauvalter VA, Lukin AA (2001) Impact of airborne pollution on the drainage area of subarctic lakes and fish. Chemosphere 42(1):51–59. https://doi.org/10.1016/S0045-6535(00)00098-9

    Article  Google Scholar 

  • Kashulin NA, Sandimirov SS, Dauwalter VA, Kudryavtseva LP, Terentyev PM, Denisov DB, Vandysh OI, Koroleva IM, Valkova SA, Kashulina TG (2013) An annotated ecological catalog of lakes in the Murmansk region: the central and southwestern regions of the Murmansk region (basins of the Barents and White Seas and the Gulf of Bothnia of the Baltic Sea). Kola Science Center RAS, Apatity (in Russian)

    Google Scholar 

  • Keinonen M (1992) The isotopic composition of lead in man and the environment in Finland 1966–1987: isotope ratios of lead as indicators of pollutant source. Sci Total Environ 113(3):251–268. https://doi.org/10.1016/0048-9697(92)90004-C

    Article  Google Scholar 

  • Krachler M, Zheng J, Koerner R, Zdanowicz C, Fisher D, Shotyk W (2006) Increasing atmospheric antimony contamination in the northernhemisphere: snow and ice evidence from Devon Island, Arctic Canada. J Environ Monit 7(12):1169–1176. https://doi.org/10.1039/b509373b

    Article  Google Scholar 

  • Kuwae M, Tsugeki NK, Agusa T, Toyoda K, Tani Y, Ueda S, Tanabe S, Urabe J (2013) Sedimentary records of metal deposition in Japanese alpine lakes for the last 250 years: recent enrichment of airborne Sb and In in East Asia. Sci Total Environ 442:189–197. https://doi.org/10.1016/j.scitotenv.2012.10.037

    Article  Google Scholar 

  • Li X, Liu E, Zhang E, Lin Q, Yu Z, Nath B, Yuan H, Shen J (2020) Spatio-temporal variations of sedimentary metals in a large suburban lake in southwest China and the implications for anthropogenic processes. Sci Total Environ 707:135650. https://doi.org/10.1016/j.scitotenv.2019.135650

    Article  Google Scholar 

  • Lin Q, Enfeng L, Enlou Z, Bibhash N, Ji S, Hezhong Y, Rong W (2018) Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep Alpine Lake: historical trends, sources and sediment focusing. Sci Total Environ 613–614:331–41. https://doi.org/10.1016/j.scitotenv.2017.09.073

    Article  Google Scholar 

  • Lisitsyn AP (2011) Arid sedimentation in the oceans. Scattered sedimentary matter of the atmosphere. Geol Geophys 52(10):1398–1439 (in Russian)

    Google Scholar 

  • Lyanguzova IV, Goldvirt DK, Fadeeva IK (2016) Spatiotemporal dynamics of the pollution of Al–Fe-humus podzols in the impact zone of a nonferrous metallurgical plant. Eurasian Soil Sci 49(10):1189–1203. https://doi.org/10.1134/S1064229316100094

    Article  Google Scholar 

  • Maslennikova AV (2020) Development and application of an electrical conductivity transfer function, using diatoms from lakes in the Urals, Russia. J Paleolimnol 63(2):129–146. https://doi.org/10.1007/s10933-019-00106-z

    Article  Google Scholar 

  • Maslennikova AV, Udachin VN, Deryagin VV (2014) Paleoecology and geochemistry of lake sedimentation of the Holocene of the Urals. Publishing House of the Ural Branch of the Russian Academy of Sciences of the South Ural State University, Yekaterinburg (in Russian)

    Google Scholar 

  • McConnell JR, Edwards R (2008) Coal burning leaves toxic heavy metal legacy in the Arctic. Proc Natl Acad Sci 34:12140–12144. https://doi.org/10.1073/pnas.0803564105

    Article  Google Scholar 

  • Medvedev A, Slukovskii Z, Novitcky D (2019) Heavy metals pollution of small urban lakes sediments within the Onego Lake catchment area. Polish J Nat Sci 34(2):245–256

    Google Scholar 

  • Minin VA (2014) Heat supply of the cities of the Murmansk region. Trans Kola Sci Cent Russ Acad Sci 3(22):68–76 (in Russian)

    Google Scholar 

  • Moiseenko TI, Dauvalter VA, Lukin AA, Kudryavtseva LP, Ilyashuk BP, Ilyashuk EA, Sandimirov SS, Kagan LY, Vandysh OI, Sharov AN, Sharova YN, Koroleva IM (2002) Anthropogenic modifications of the ecosystem of Lake Imandra. Nauka, Moscow (in Russian)

    Google Scholar 

  • Müller G (1979) Schwermetalle in den sedimenten des Rheins—veränderungen seit 1971. Umsch Wiss Tech 79:778–783 (in German)

    Google Scholar 

  • Nazarova L, Syrykh LS, Mayfield RJ, Frolova LA, Ibragimova AG, Grekov IM, Subetto DA (2020) Palaeoecological and palaeoclimatic conditions on the Karelian Isthmus (northwestern Russia) during the Holocene. Quatern Res 95:65–83. https://doi.org/10.1017/qua.2019.88

    Article  Google Scholar 

  • Norton SA, Appleby PG, Dauvalter V, Traaen TS (1996) Trace metal pollution in eastern Finnmark, Norway and Kola Peninsula, northeastern Russia as evidences by studies of lake sediment. NIVA-Rep 41:18

    Google Scholar 

  • Nriagu JO (1990) The rise and fall of leaded gasoline. Sci Total Environ 92:13–28. https://doi.org/10.1016/0048-9697(90)90318-O

    Article  Google Scholar 

  • State document MR 2.6.1.0064-12 (2012) Radiation control of drinking water by radiochemical analysis methods, Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, Moscow (in Russian)

  • Räisänen ML, Kashulina G, Bogatyrev I (1997) Mobility and retention of heavy metals, arsenic and sulphur in podzols at eight locations in northern Finland and Norway and the western half of the Russian Kola Peninsula. J Geochem Explor 59:175–195. https://doi.org/10.1016/S0375-6742(97)00014-9

    Article  Google Scholar 

  • Rognerud S, Fjeld E (2014) Metals of heavy regional survey sediments in Norway Lake. Ambio 22(4):206–212

    Google Scholar 

  • Rognerud S, Norton SA, Dauvalter V (1993) Heavy metal pollution in lake sediments in border areas between Russia and Norway. NIVA-Rep 522(93):20

    Google Scholar 

  • Rognerud S, Hongve D, Fjeld E, Ottesen RT (2000) Trace metal concentrations in lake and overbank sediments in southern Norway. Environ Geol 39(7):723–732. https://doi.org/10.1007/s002540050486

    Article  Google Scholar 

  • Rognerud S, Dauvalter VA, Fjeld E, Skjelkvåle BL, Christensen G, Kashulin N (2013) Spatial trends of trace-element contamination in recently deposited lake sediment around the Ni–Cu smelter at nikel, Kola Peninsula, Russian Arctic. Ambio 42(6):724–736. https://doi.org/10.1007/s13280-013-0384-8

    Article  Google Scholar 

  • Saet YE, Revich BA, Yanin EP (1990) Geochemistry of the environment. Nedra: Moscow (in Russian)

  • Sandimirov SS, Kudryavtseva LP, Dauvalter VA, Denisov DB, Kosova AL, Cherepanov AA, Vandysh OI, Valkova SA, Terentyev PM, Koroleva IM, Zubova EM, Kashulin NA (2019) Methods of ecological research of water bodies in the Arctic. MSTU Publishing House, Murmansk (in Russian)

    Google Scholar 

  • Shukla BS, Joshi SR (1989) An evaluation of the CIC model of 210Pb dating of sediments. Environ Geol Water Sci 14:73–76. https://doi.org/10.1007/BF01740587

    Article  Google Scholar 

  • Sinkevich EI, Ekman IM (1995) Bottom sediments of lakes in the eastern part of the Fennoscandinavian crystalline shield. KarRC RAS, Petrozavodsk (in Russian)

    Google Scholar 

  • Slukovskii ZI (2020) Background concentrations of heavy metals and other chemical elements in the sediments of small lakes in the south of Karelia, Russia. J MSTU 23(1):80–92. https://doi.org/10.21443/1560-9278-2020-23-1-80-92

    Article  Google Scholar 

  • Slukovskii ZI, Dauvalter VA (2020) Features of accumulation of lead, antimony and cadmium in the deposits of small lakes in the south of Karelia. Trans Karelian Sci Cent Russ Acad Sci 4:75–94. https://doi.org/10.1707/lim1198 (in Russian)

    Article  Google Scholar 

  • Slukovskii ZI, Ilmast NV, Sukhovskaya IV, Borvinskaya EV, Gogolev MA (2017) Geochemical specificity of the process of modern sedimentation under conditions of technogenesis (for example, Lake Lamba, Petrozavodsk, Karelia). Proc Karelian Sci Cent Russ Acad Sci 10:45–63 (in Russian)

    Google Scholar 

  • Slukovskii ZI, Shelekhova TS, Siroezhko EV (2018) A response of diatoms from the small lake on heavy metals effect in an urban environment, Republic of Karelia. Vestnik of Saint Petersburg University 63(1):103–123. https://doi.org/10.21638/11701/spbu07.2018.106

  • Slukovskii Z, Dauvalter V, Guzeva A, Denisov D, Cherepanov A, Siroezhko E (2020a) The hydrochemistry and recent sediment geochemistry of small lakes of Murmansk, Arctic Zone of Russia. Water 12:1130. https://doi.org/10.3390/w12041130

    Article  Google Scholar 

  • Slukovskii Z, Medvedev M, Siroezhko E (2020b) Long-range transport of heavy metals as a factor of the formation of the geochemistry of sediments in the southwest of the Republic of Karelia, Russia. J Elementol 25(1):125–137. https://doi.org/10.5601/jelem.2019.24.1.1816

    Article  Google Scholar 

  • Sojka M, Siepak M, Pietrewicz K (2019) Concentration of rare earth elements in surface water and bottom sediments in lake Wadąg, Poland. J Elementol 24(1):125–140. https://doi.org/10.5601/jelem.2018.23.2.1648

    Article  Google Scholar 

  • Stankevica K, Klavins M, Rutina L (2012) Accumulation of metals in sapropel. Mater Sci Appl Chem 26:99–105

    Google Scholar 

  • Strakhovenko VD (2011) Geochemistry of bottom sediments of small continental lakes of Siberia. Institute of Geology and Mineralogy, Novosibirsk (in Russian)

    Google Scholar 

  • Strakhovenko V, Subetto D, Hang T, Ovdina E, Danilenko I, Belkina N, Potakhin M, Zobkov M, Gurbich V (2018) Mineral and geochemical composition of the Onega ice lake sediments. Baltica 31(2):165–172. https://doi.org/10.5200/baltica.2018.31.16

    Article  Google Scholar 

  • Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl Radiat Isot 69(10):1466–1474. https://doi.org/10.1016/j.apradiso.2011.05.020

    Article  Google Scholar 

  • Thomas V (1995) The elimination of lead in gasoline. Annu Rev Energy Environ 20:301–324. https://doi.org/10.1146/annurev.eg.20.110195.001505

    Article  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffney DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Meeresunters 33:566–572. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • Udachin VN, Aminov PG, Filippova KA (2014) Geochemistry of mining technogenesis of the Southern Urals. Ekaterinburg (in Russian)

  • Vinogradova AA, Ivanova YA (2013) Air pollution in central Karelia during long-range transport of anthropogenic impurities in the atmosphere. Bull Russ Acad Sci 5:98–108. https://doi.org/10.15356/0373-2444-2013-5-98-108 (in Russian)

    Article  Google Scholar 

  • Vinogradova A, Kotova E, Topchaya V (2017) Atmospheric transport of heavy metals to regions of the north of the European territory of Russia. Geogr Nat Resour 38:78–85. https://doi.org/10.1134/S1875372817010103

    Article  Google Scholar 

  • Virkutyte J, Vadakojyte S, Sinkevičius S, Sillanpää M (2008) Heavy metal distribution and chemical partitioning in Lake Saimaa (SE Finland) sediments and moss Pleurozium schreberi. J Chem Ecol 24(2):119–132. https://doi.org/10.1080/02757540801920105

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232. https://doi.org/10.12691/jephh-3-3-2

    Article  Google Scholar 

  • White SJO, Hemond HF (2012) The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Crit Rev Environ Sci Technol 42:155–186. https://doi.org/10.1080/10643389.2010.498755

    Article  Google Scholar 

  • Ye L, Cook NJ, Ciobanu CL, Yuping L, Qian Z, Tiegeng L, Wei G, Yulong Y, Danyushevskiy L (2011) Trace and minor elements in sphalerite from base metal deposits in south China: A LA-ICPMS study. Ore Geol Rev 39(4):188–217. https://doi.org/10.1016/j.oregeorev.2011.03.001

    Article  Google Scholar 

  • Yudovich JE, Ketris MP (2005) Toxic impurities in fossil fuels. Ural Branch of the Russian Academy of Sciences, Ekaterinburg (in Russian)

    Google Scholar 

  • Zubova EM, Kashulin NA, Dauvalter VA, Denisov DB, Valkova SA, Vandysh OI, Slukovskii ZI, Terentyev PM, Cherepanov AA (2020) Long-term environmental monitoring in an arctic lake polluted by heavy metals under climate change. Environments. https://doi.org/10.3390/environments7050034

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to their colleagues A. S. Cherepanov, P. M. Terentyev, and D. B. Denisov for help in sampling water and sediments of lakes, as well as S. V. Burdukh, A. S. Paramonov, M. V. Ekhova, and V. L. Utitsina for the quality of analytical research. Also, the authors express their gratitude to reviewers for the quality assessment of the manuscript and valuable marks to improve it.

Funding

The studies were carried out in the framework of the implementation of the grant of the President of the Russian Federation No. MK-462.2019.5 titled “Paleolimnological reconstructions of technogenic events in the Arctic zone based on geochemical and geochronological data” (studying of the age of lake sediments of background areas of the North of Russia and analysis of trace element concentrations in these sediments) and the grant of the Russian Science Foundation No. 19-77-10007 (geochemistry of recent sediments from urban lakes of Murmansk region), as well as in the framework of the state assignment of the Karelian Research Centre of the Russian Academy of Sciences (Institute of Geology) (assessment of concentrations of rare earth elements in lake sediments of Karelia) and the Kola Science Center of the RAS (Institute of the North Industrial Ecology Problems) (studying of the water chemistry of lakes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakhar Slukovskii.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 171962 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slukovskii, Z., Medvedev, M., Mitsukov, A. et al. Recent sediments of Arctic small lakes (Russia): geochemistry features and age. Environ Earth Sci 80, 302 (2021). https://doi.org/10.1007/s12665-021-09609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09609-3

Keywords

Navigation