Skip to main content

Advertisement

Log in

Biogeochemical characterization of a Mediterranean shallow lake using stable isotopes: Laguna del Cristo (NW Iberian Peninsula)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The present multi-isotopic study (δ18O–δDwater, δ34S–δ18Odissolved-sulphate, δ13Cdissolved-inorganic-carbon, δ13C–δ18Oshells-modern-gastropods, δ13Cplants, and δ13Csedimentary-organic-matter) is aimed at assessing the hydrogeochemical changes and biogeochemical dynamics in a Mediterranean shallow lake fed by a Quaternary–Tertiary aquifer, the “Laguna del Cristo” (NW Iberian Peninsula), a system sensitive to climate fluctuations, between 2010 and 2011. Lake water is of the bicarbonate type, and there are no major pollutants. δ18O-δDwater values plot on a local evaporation line (δD=5.29δ18O–12.29) indicating that evaporative enrichment had a significant impact on lake water isotopic features. Periods of high water levels are characterized by lower δ34S–δ18Odissolved-sulphate and δ13Cdissolved-inorganic-carbon values and suggest sulphate derived from weathering of sulphides in the catchment area, delivered to the lake by surface run-off or via groundwater, and in situ decay of organic matter. During lower water levels, sulphate reduction and enhanced primary productivity lead to higher δ34Sdissolved-sulphate and δ13Cdissolved-inorganic-carbon values. Evaporation induced enrichment in 18Osulphate, 13Cdissolved-inorganic-carbon and 13C–18Oshells-Galba-Gyraulus. δ13Cplant confirms the C3 photosynthetic pathway. Enrichment in 13C submerged aquatic plants indicates that HCO3 is the main carbon source, except for 13C-depleted Potamogeton. The TOC, δ13Corg values, and TC/TN ratios in sediments all confirm the autochthonous character of organic matter contribution. This study provides a baseline for isotopic research into shallow, flow-through lakes fed by siliciclastic aquifers, and stresses the importance of evaporation and refilling (direct precipitation and groundwater discharge) in controlling the solute chemistry and stable isotopic composition in temperate regions with contrasting seasonal climates. The results also provide a snapshot of modern lake isotope variability that can be applied to paleoenvironmental reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The “Dehesa” ecosystem is a managed Mediterranean forest, populated by Quercus evergreens, that was cleared for pastures, extending for some 2 × 105 Km2 in the Iberian Peninsula.

References

  • Alonso M (1998) Las lagunas de la España peninsular. Limnetica 15:1–176

    Google Scholar 

  • Anadón P, Martín-Rubio M, Robles F, Rodriguez-Lázaro J, Utrilla R, Vázquez A (2010) Variation in Sr uptake in the shell of the freshwater gastropod Bithynia tentaculata from Lake Arreo (northern Spain) and culture experiments. Palaeogeogr Palaeoclimatol Palaeoecol 288:24–34

    Article  Google Scholar 

  • Araguás-Araguás L, Rozanski K, Gonfiantini R, Louvat D (1995) Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses. J Hydrol 168:159–171

    Article  Google Scholar 

  • Bernáldez FG, Rey Benayas JM, Martínez A (1993) Ecological impact of groundwater extraction on wetlands (Douro basin, Spain). J Hydrol 141:219–238

    Article  Google Scholar 

  • Celle-Jeanton H, Travi Y, Blavoux B (2001) Isotopic typology of the precipitation in the Western Mediterranean Region at three different time scales. Geophys Res Lett 28:1215–1218

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  Google Scholar 

  • Coleman ML, Moore MP (1978) Direct reduction of sulfates to sulfur dioxide for isotopic analysis. Anal Chem 50:1594–1595

    Article  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  Google Scholar 

  • Craig H (1961) Isotopic Variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Darling WG, Bath AH, Gibson JJ, Rozanski K (2005) Isotopes in water. In: Leng MJ (ed) Isotopes in palaeoenvironmental research. Springer, Dordrecht, pp 1–66

    Google Scholar 

  • Deines P (1980) The isotope composition of reduced organic carbon. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry, the terrestrial environment, vol A. Elsevier, Amsterdam, pp 329–406

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40:503–537

    Article  Google Scholar 

  • Fernández Aláez M, Fernández-Aláez C (2010) Effects of the intense summer desiccation and the autumn filling on the water chemistry in some Mediterranean ponds. Limnetica 29(1):59–74

    Google Scholar 

  • Fernández Aláez C, Fernández Aláez M, Trigal Domínguez C, Luis Santos B (2006) Hydrochemistry of northwest Spain ponds and its relationships to groundwaters. Limnetica 25:433–452

    Google Scholar 

  • Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum, New York, pp 73–98

    Chapter  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry. US Geological Survey professional paper, 440KK

  • Fritz P, Poplawski S (1974) 18O and 13C in the shells of freshwater molluscs and their environments. Earth Planet Sci Lett 24:91–98

    Article  Google Scholar 

  • Froehlich K, Gibson JJ, Aggarwal PK (2002) Deuterium excess in precipitation and its climatological significance. Proceedings of study of environmental change using isotope techniques. IAEA, Vienna, pp 54–66

  • Groffman P, Taylor M (1996) Non-tidal wetlands. In: Watson RT, Zinyowera MC, Moss RH, Dokken D (eds) Climate change 1995. Cambridge University Press, Cambridge, pp 217–239

    Google Scholar 

  • Hassan KM, Swinehart JB, Spalding RF (1997) Evidence for Holocene environmental change from C/N ratios and δ13C and δ15N values in Swan Lake sediments, western Sand Hills, Nebraska. J Paleolimnol 18:121–130

    Article  Google Scholar 

  • Herzschuh U, Mischke S, Meyer H, Plessen B, Zhang C (2010) Using variations in the stable carbon isotope composition of macrophyte remains to quantify nutrient dynamics in lakes. J Paleolimnol 43:739–750

    Article  Google Scholar 

  • Hijosa-Valsero M, Bécares E, Fernández-Aláez C, Fernández-Aláez M, Mayo R, Jiménez JJ (2016) Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain): PAHs, insecticides and herbicides in water and sediments. Sci Total Environ 544:797–810

    Article  Google Scholar 

  • Hoefs J (2004) Stable isotope geochemistry, 5th edn. Springer, Berlin

    Book  Google Scholar 

  • Jambrina M, Armenteros I, Corrochano A, Recio C (2013) Origin and hydrogeochemistry of a shallow flow-through lake on a Pleistocene piedmont, northern Spanish Meseta. J Limnol 72(2):361–375

    Article  Google Scholar 

  • Jones MD, Leng MJ, Eastwood WJ, Keen DH, Turney CSM (2002) Interpreting stable-isotope records from freshwater snail-shell carbonate: a Holocene case study from Lake Gölhisar, Turkey. Holocene. https://doi.org/10.1191/0959683602hl564rr

    Google Scholar 

  • Keely JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035

    Article  Google Scholar 

  • Kehew AE (2001) Applied chemical hydrogeology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kendall C, Doctor DK (2003) Stable isotope applications in hydrologic studies. In: Drever JI, Holland HD, Turekian KK (eds) Treatise on geochemistry. Surface and ground water weathering and soils, vol 5. Elsevier, pp 319–364

  • Keough JR, Hagley CA, Ruzycki E, Sierszen ME (1998) δ13C composition of primary producers and role of detritus in a freshwater coastal ecosystem. Limnol Oceanogr 43:734–740

    Article  Google Scholar 

  • Krouse HR (1980) Sulphur isotopes in our environment. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1. The terrestrial environment. A. Elsevier, Amsterdam, pp 435–471

    Google Scholar 

  • Krouse HR, Grinenko VA (1992) Stable isotopes: natural and anthropogenic sulphur in the environment. SCOPE, 43. Wiley, New York

    Google Scholar 

  • Krouse HR, Mayer B (2000) Sulphur and oxygen isotopes in sulphate. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 195–231

    Chapter  Google Scholar 

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831

    Article  Google Scholar 

  • Leng MJ, Lamb AL, Lamb HF, Telford RJ (1999) Palaeoclimatic implications of isotopic data from modern and early Holocene shells of the freshwater snail Melanoides tuberculata, from lakes in the Ethiopian Rift Valley. J Paleolimnol 21:97–106

    Article  Google Scholar 

  • Leng MJ, Lamb AL, Heaton THE, Marshall JD, Wolfe BB, Jones MD, Holmes JA, Arrowsmith C (2005) Isotopes in lake sediments. In: Leng MJ (ed) Isotopes in palaeoenvironmental research. Springer, Dordretch, pp 147–176

    Google Scholar 

  • Martín-Serrano A, Cantano M, Carral P, Rubio F, Mediavilla R (1998) La degradación cuaternaria del piedemonte del rio Yeltes (Salamanca). Cuaternario y Geomorfología 12:5–17

    Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61(3):611–622

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 144:289–302

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  • Molina E, Cantano M (2002) Study of weathering processes developed on old piedmont surfaces in Western Spain: new contributions to the interpretation of the “Raña” profiles. Geomorphology 42:279–292

    Article  Google Scholar 

  • Mook WG (2002) Environmental isotopes in the hydrological cycle, principles and applications. IHP-V technical documents in hydrology, No. 39, vol I. UNESCO, Paris

    Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Plant Sci Lett 22:169–176

    Article  Google Scholar 

  • Myrbo A, Shapley MD (2006) Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions (δ13CDIC) in small hardwater lakes in Minnesota and Montana. Geochimt Cosmochim Acta. 70(11):2699–2714

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336

    Article  Google Scholar 

  • Rey Benayas JM (1990) Ecosistemas de descarga de acuíferos en la cuenca del Duero. PhD Thesis. Universidad Autónoma de Madrid, Madrid

  • Robinson BW, Kusakabe M (1975) Quantitative preparation of sulfur dioxide for 34S/32S analyses from sulfides by combustion with cuprous oxide. Anal Chem 47:1179–1181

    Article  Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56(1):419–430

    Article  Google Scholar 

  • Shanahan TM, Pigati JS, Dettman DL, Quade J (2005) Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition. Geochim Cosmochim Acta 69:3949–3966

    Article  Google Scholar 

  • Staal M, Elzenga JTM, Prins HBA (1989) 14C fixation by leaves and leaf cell protoplasts of the submerged aquatic angiosperm Potamogeton lucens L. carbon dioxide or bicarbonate? Plant Physiol 90:1035–1040

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Taillefert M, Gaillard JF (2002) Reactive transport modeling of trace elements in the water column of a stratified lake: iron cycling and metal scavenging. J Hydrol 256(1–2):16–34

    Article  Google Scholar 

  • van Everdingen RO, Krouse HR (1985) Isotope composition of sulphates generated by bacterial and abiological oxidation. Nature 315:395–396

    Article  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality. [http://www.who.int/en/]

  • Wurts WA, Durborow RM (1992) Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds. Southern Regional Aquaculture Center, USA, Publication No. 464

    Google Scholar 

Download references

Acknowledgements

Funding for this research has been provided by Spanish Ministry of Science and Innovation through the MINECO CGL2014-54818-P project, by project SA075A04 from Consejería de Educación y Cultura, Junta de Castilla y León. Facilities were provided by the Stable Isotope Laboratory of Salamanca University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Jambrina-Enríquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jambrina-Enríquez, M., Recio, C. & Armenteros, I. Biogeochemical characterization of a Mediterranean shallow lake using stable isotopes: Laguna del Cristo (NW Iberian Peninsula). Environ Earth Sci 77, 49 (2018). https://doi.org/10.1007/s12665-018-7238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7238-4

Keywords

Navigation