We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

Comparison of the microbial community composition of pristine rock cores and technical influenced well fluids from the Ketzin pilot site for CO2 storage

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Two geological formations at the CO2 storage pilot site in Ketzin (Germany) were geochemically and microbiologically characterized to further evaluate changes resulting from CO2 injection. Well fluids were collected from both Stuttgart (storage formation, ~650 m depth) and Exter Formations (~400 m depth, overlying the caprock) either through pump tests or downhole samplings. Rock samples were retrieved during a deep drilling into the Exter Formation and primarily comprised quartz, ferrous dolomite or ankerite, calcite, analcime, plagioclase and clay minerals, as determined through X-ray diffraction analyses. In the rocks, the total organic carbon (TOC), which potentially contributes to microbial growth, was mostly below 1000 mg kg−1. The geochemical characterization of fluids revealed significant differences in the ionic composition between both formations. The microbial characterization was performed through fluorescence in situ hybridization and 16S rRNA gene fingerprinting. In the fluids obtained from the Stuttgart Formation, the microbial activity was affected by the relatively high TOC, introduced by the organic drill mud. The total cell counts were approximately 106 cells mL−1. The microbial community was characteristic of a saline deep biosphere environment enriched through increased carbon availability, with sulfate-reducing bacteria as the most abundant microorganisms (up to 60 % of total cells). Species belonging to halophilic/halotolerant Proteobacteria and Firmicutes were primarily detected. In Exter Formation rocks, Proteobacteria and Actinobacteria were detected. These data provide an explicit reference to further evaluate environmental changes and community shifts in the reservoir during CO2 storage and provide information for evaluating the storage efficiency and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldén L, Demoling F, Bååth E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl Environ Microb 67:1830–1838. doi:10.1128/AEM.67.4.1830-1838.2001

    Article  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Appl Environ Microb 56(6):1919–1925

    Google Scholar 

  • Baker BJ, Moser DP, MacGregor BJ, Fishbain S, Wagner M, Fry NK, Jackson B et al (2003) Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of south Africa and deep basalt aquifers of Washington state. Environ Microbiol 5:267–277. doi:10.1046/j.1462-2920.2003.00408.x

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  Google Scholar 

  • Basso O, Lascourreges JF, Jarry M, Margot M (2005) The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environ Micobiol 7:13–21. doi:10.1111/j.1462-2920.2004.00660.x

    Google Scholar 

  • Basso O, Lascourreges JF, Le Borgne F, Le Goff C, Margot M (2009) Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. Res Microbiol 160(2):107–116. doi:10.1016/j.resmic.2008.10.010

    Article  Google Scholar 

  • Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943. doi:10.1007/s12665-013-2883-0

    Article  Google Scholar 

  • Beech IB, Sunner JA, Hiraoka K (2005) Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol 8(3):157–168

    Google Scholar 

  • Berner A (1970) Sedimentary pyrite formation. Am J Sci 268:1–23. doi:10.2475/ajs.268.1.1

    Article  Google Scholar 

  • Bock S, Förster H, Meier A, Pudlo D, Förster A, Gaupp R (2013) Impact of 4-year CO2 injection on reservoir-rock integrity at the CO2 pilot site Ketzin (Germany). Abstracts #H21L-02 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9–13 Dec

  • Boivin-Jahns V, Ruimy R, Bianchi A, Daumas S, Christen R (1996) Bacterial diversity in a deep-subsurface clay environment. Appl Environ Microb 62(9):3405–3412

    Google Scholar 

  • Brockman FJ, Kieft TL, Fredrickson JK, Bjornstad BN, Li SW, Spangenburg W, Long PE (1992) Microbiology of vadose zone paleosols in South-Central Washington State. Microbiol Ecol 23:279–301

    Article  Google Scholar 

  • Crombie DJ, Moody GJ, Thomas JDR (1980) Corrosion of iron by sulfate-reducing bacteria. Chem Ind London 21(6):500–505

    Google Scholar 

  • Czarnetzki AB, Tebbe CC (2004) Diversity of bacteria associated with collembola—a cultivation-independent survey based on PCR-amplified 16S rRNA genes. FEMS Microbiol Ecol 49:217–227. doi:10.1016/j.femsec.2004.03.007

    Article  Google Scholar 

  • Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient fort the detection of all bacteria; development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22(3):434–444. doi:10.1016/S0723-2020(99)80053-8

    Article  Google Scholar 

  • Dohrmann AB, Tebbe CC (2004) Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). In: Kowalchuk GA, Bruijn FJ de, Head IM, Akkermans AD, van Elsas JD (eds) Molecular microbial ecology manual, 2nd edn. Kluwer Academic Publisher, Dodrecht 3(16):809–838

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microb 80(4):1226–1236. doi:10.1128/AEM.02848-13

    Article  Google Scholar 

  • Fischer S, Liebscher A, Wandrey M, the CO2SINK Group (2010) CO2-brine-rock interaction—first results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO2 reservoir. Chem Erde-Geochem 70(S3):155–164. doi:10.1016/j.chemer.2010.06.001

    Article  Google Scholar 

  • Ford T, Mitchell R (1990) The ecology of microbial corrosion. Adv Microb Ecol 11:231–262

    Article  Google Scholar 

  • Förster A, Giese R, Juhlin C, Norden B, Springer N, the CO2SINK Group (2009) The geology of the CO2SINK site: from regional scale to laboratory scale. Energy Proc 1(1):2911–2918. doi:10.1016/j.egypro.2009.02.066

    Article  Google Scholar 

  • Förster A, Schöner R, Förster HJ, Norden B, Blaschke AW, Luckert J, Beutler G, Gaupp R, Rhede D (2010) Reservoir characterization of a CO2 storage aquifer: the upper triassic stuttgart formation in the Northeast German Basin. Mar Petrol Geol 27:2156–2172. doi:10.1016/j.marpetgeo.2010.07.010

    Article  Google Scholar 

  • Fredrickson JK, Balkwill DL (2006) Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol J 23(6):345–356. doi:10.1080/01490450600875571

    Article  Google Scholar 

  • Fry NK, Friedrickson JK, Fishbain S, Wagner M, Stahl D (1997) Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers. Appl Environ Microb 63(4):1498–1504

    Google Scholar 

  • Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67:1277–1288. doi:10.1016/S0016-7037(02)01199-7

    Article  Google Scholar 

  • Goldscheider N, Hunkeler D, Rossi P (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14(6):926–941. doi:10.1007/s10040-005-0009-9

    Article  Google Scholar 

  • Gulliver DM, Lowry GV, Gregory KB (2014a) CO2 concentration and pH alters subsurface microbial ecology at reservoir temperature and pressure. RSC Adv 4:17443–17453. doi:10.1039/C4RA02139H

    Article  Google Scholar 

  • Gulliver DM, Lowry GV, Gregory KB (2014b) Effect of CO2(aq) exposure on a freshwater aquifer microbial community from simulated geologic carbon storage leakage. Environ Sci Technol Lett 1(12):479–483. doi:10.1021/ez500337v

    Article  Google Scholar 

  • Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate-reducing bacteria. Crit Rev Env Sci Tec 26(2):155–187. doi:10.1080/10643389609388489

    Article  Google Scholar 

  • Hazen TC, Jimenez L, Lopez de Victoria G, Fliermans CB (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microbial Ecol 22(1):293–304. doi:10.1007/BF02540231

    Article  Google Scholar 

  • Iverson VP (1987) Microbial corrosion of metals. Adv Apl Microbiol 32(1):1–36. doi:10.1016/S0065-2164(08)70077-7

    Article  Google Scholar 

  • Jakobsen TF, Kjeldsen KU, Ingvorsen K (2006) Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. Int J Syst Evol Micr 56(9):2063–2069. doi:10.1099/ijs.0.64323-0

    Article  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Fast and famine—microbial life in the deep-sea bed. Nature 5:770–781. doi:10.1038/nrmicro1745

    Google Scholar 

  • Kallmeyer J, Mangelsdorf K, Cragg B, Horsfield B (2006) Techniques for contamination assessment during drilling for terrestrial subsurface sediments. Geomicrobiol J 23:227–239. doi:10.1080/01490450600724258

    Article  Google Scholar 

  • Kasina M, Bock S, Würdemann H, Pudlo D, Picard A, Lichtschlag A, März Ch, Wagenknecht L, Wehrmann LM, Vogt C, Ferdelman TG, Meister P. Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO2 storage site before CO2 arrival. Environ Earth Sci (submitted)

  • Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth-Sci Rev 58:367–395. doi:10.1016/S0012-8252(01)00082-4

    Article  Google Scholar 

  • Kouduka M, Suko T, Morono Y, Inagaki F, Ito K, Suzuki Y (2012) A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol Lett 326:47–54. doi:10.1111/j.1574-6968.2011.02437.x

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lavania M, Sarma PM, Mandal AK, Cheema S, Lai B (2011) Efficacy of natural biocide on control of microbial induced corrosion in oil pipelines mediated by Desulfovibrio vulgaris and Desulfovibrio gigas. J Environ Sci 23(8):1394–1402. doi:10.1016/S1001-0742(10)60549-9

    Article  Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulphate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8(3):165–194. doi:10.1080/08927019509378271

    Article  Google Scholar 

  • Lerm S, Westphal A, Miethling-Graff R, Alawi M, Seibt A, Wolfgramm M, Wurdemann H (2013) Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 17(2):311–327. doi:10.1007/s00792-013-0518-8

    Article  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15(4):593–600. doi:10.1016/S0723-2020(11)80121-9

    Article  Google Scholar 

  • Manz W, Eisenbrecher M, Neu TR, Szewzyk U (1998) Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25(1):43–61. doi:10.1111/j.1574-6941.1998.tb00459.x

    Article  Google Scholar 

  • Martens S, Kempka T, Liebscher A, Lüth S, Möller F, Myrttinen A, Norden B, Schmidt-Hattenberger C, Zimmer M, Kühn M, the Ketzin Group (2012) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ Earth Sci 67(2):323–334. doi:10.1007/s12665-012-1672-5

    Article  Google Scholar 

  • Martens S, Liebscher A, Möller F, Henninges J, Kempka T, Lüth S, Norden B, Prevedel B, Szisybalski A, Zimmer M, Kühn M, the Ketzin Group (2013) CO2 Storage at the Ketzin Pilot Site, Germany: fourth year of injection, monitoring, modelling and verification. En Proc 37:6434–6443. doi:10.1016/j.egypro.2013.06.573

    Article  Google Scholar 

  • Meier H, Amann R, Ludwig W, Schleifer K-H (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+C content. Syst Appl Microbiol 22(2):186–196. doi:10.1016/S0723-2020(99)80065-4

    Article  Google Scholar 

  • Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) (2005) IPCC Special report on carbon dioxide capture and storage. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Morozova D, Wandrey M, Zimmer M, Pilz P, Zettlitzer M, Würdemann H, the CO2SINK Group (2010) Monitoring of the microbial community composition in saline aquifers during CO2 sequestration by fluorescence in situ hybridisation. Int J Greenh Gas Control 4:981–989. doi:10.1016/j.ijggc.2009.11.014

    Article  Google Scholar 

  • Morozova D, Alawi M, Shaheed M, Krüger M, Kock D, Würdemann H (2011) The influence of microbial activity on rock fluid interaction: baseline characterization of deep microbial biosphere for enhanced gas recovery in the Altmark natural gas reservoir. En Proc 4:4633–4640. doi:10.1016/j.egypro.2011.02.423

    Article  Google Scholar 

  • Morozova D, Let D, Würdemann H (2013) Analysis of the microbial community from a saline aquifer prior to CO2 injection in Ketzin using improved Fluorescence in situ Hybridisation method. Energy Proc 40:276–284. doi:10.1016/j.egypro.2013.08.032

    Article  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Google Scholar 

  • Neef A (1997) Anwendung der in situ Einzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozinösen. Ph.D. thesis, Technische Universität München

  • Norden B, Klapperer S (2011) Geologischer Abschlußbericht der Bohrung Hy Ktzi P 300/2011. Deutsches Geoforschungzentrum GFZ, Helmholtz Zentrum Potsdam

  • Norden B, Förster A, Vu-Hoang D, Marcelis F, Springer N, Le Nir I (2010) Lithological and petrophysical core-log interpretation in CO2SINK, the european CO2 onshore research store and verification project. SPE Reserv Eval Eng 13(2):179–192. doi:10.2118/115247-PA

    Article  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2. doi:10.1186/1746-1448-4-2

    Article  Google Scholar 

  • Pankhania IP (1988) Hydrogen metabolism in sulfate-reducing bacteria and its role in anaerobic corrosion. Biofouling 1(1):27–47. doi:10.1080/08927018809378094

    Article  Google Scholar 

  • Pedersen K, Hallbeck L, Arlinger J, Erlandson AC, Jahromi N (1997) Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing method. J Microbiol Meth 30:179–192. doi:10.1016/S0167-7012(97)00066-3

    Article  Google Scholar 

  • Pellizzari L, Neumann D, Alawi M, Voigt D, Norden B, Würdemann H (2013) Use of tracers to assess drill mud penetration depth into sandstone rock cores during deep drilling: method development and application. Environ Earth Sci 70:3727–3738. doi:10.1007/s12665-013-2715-2

    Article  Google Scholar 

  • Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization. In: Paul J (ed) Methods in microbiology: marine microbiology, vol 30. Academic Press Ltd, London

    Google Scholar 

  • Pellizzari L, Kasina M, Lienen T, Würdemann H. Influence of drill mud on the microbial communities of sandstone rocks and well fluids at the Ketzin pilot site for CO2 storage. Enviro Earth Sci (submitted)

  • Prevedel B, Wohlgemuth L, Legarth B, Henninges J, Schütt H, Schmidt-Hattenberger C, Norden B, Förster A, Hurter S (2009) The CO2SINK boreholes for geological CO2 -storage testing. Energy Proc 1:2087–2094. doi:10.1016/j.egypro.2009.01.272

    Article  Google Scholar 

  • Ramsing NB, Fossing H, Ferdelman TG, Andersen F, Thamdrup B (1996) Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microb 62(4):1391–1404

    Google Scholar 

  • Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callighan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microb 74:143–152. doi:10.1128/AEM.01133-07

    Article  Google Scholar 

  • Salter SJ, Cox MJ, Turek EJ, Calus SJ, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87. doi:10.1186/s12915-014-0087-z

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Scherf AK, Zetzl C, Smirnova I, Zettlitzer M, Vieth-Hillebrand A, the CO2SINK-group (2011) Mobilisation of organic compounds from reservoir rocks through the injection of CO2—comparison of baseline characterization and laboratory experiments. En Proc 4:4524–4531. doi:10.1016/j.egypro.2011.02.409

    Article  Google Scholar 

  • Schilling F, Borm G, Giese R, Schmidt-Hattenberger C, Wohlgemuth L, Würdemann H, Zimmer M, the CO2SINK Group (2008) CO2 injection at Ketzin. In: Kukla P, Littke R (eds) Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, Heft 60, International Conference and 106th Annual Meeting of the Deutsche Gesellschaft für Geowissenschaften e.V. (DGG) and 98th Annual Meeting of the Geologische Vereinigung e.V. (GV) p. 126

  • Schilling F, Borm G, Würdemann H, Möller F, Kühn M (2009) Status report on the First European on-shore CO2 storage site at Ketzin (Germany). Energy Proc 1:2029–2035. doi:10.1016/j.egypro.2009.01.264

    Article  Google Scholar 

  • Schoonen MAA (2004) Mechanisms of sedimentary pyrite formation. GSA Special Papers 379:117–134. doi:10.1130/0-8137-2379-5.117

    Google Scholar 

  • Schultze-Lam S, Fortin D, Davis B, Beveridge TJ (1996) Mineralization of bacterial surfaces. Chem Geol 132:171–181. doi:10.1016/S0009-2541(96)00053-8

    Article  Google Scholar 

  • Shimizu S, Akiyama M, Naganuma T, Fujioka M, Nako M, Ishijima Y (2007) Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology 5(4):423–433. doi:10.1111/j.1472-4669.2007.00123.x

    Article  Google Scholar 

  • Sorokin DY, Tourova TP, Mussmann M, Muyzer G (2008) Dethiobacter alkaliphilus gen. nov sp nov., and Desulfurivibrio alkaliphilus gen. nov sp nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12:431–439. doi:10.1007/s00792-008-0148-8

    Article  Google Scholar 

  • Stahl DA, Amann D (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 205–248

    Google Scholar 

  • Stubner S, Meuser K (2000) Detection of Desulfotomaculum in an Italian rice paddy soil by 16S ribosomal nucleic acid analyses. FEMS Microbiol Ecol 34(1):73–80. doi:10.1111/j.1574-6941.2000.tb00756.x

    Article  Google Scholar 

  • Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microb 67:5750–5760. doi:10.1128/AEM.67.21.5750-5760.2001

    Article  Google Scholar 

  • Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14(2):136–143. doi:10.1002/cyto.990140205

    Article  Google Scholar 

  • Wandrey M, Morozova D, Zettlitzer M, Würdemann H, the CO2SINK Group (2010) Assessing drilling mud and technical fluid contamination in rock core and brine samples intended for microbiological monitoring at the CO2 storage site in Ketzin using fluorescent dye tracers. Int J Greenh Gas Control 4(6):972–980. doi:10.1016/j.ijggc.2010.05.012

    Article  Google Scholar 

  • Wandrey M, Pellizzari L, Zettlitzer M, Würdemann H (2011) Microbial community and inorganic fluid analysis during CO2 storage within the frame of CO2SINK—long-term experiments under in situ conditions. Energy Proc 4:3651–3657. doi:10.1016/j.egypro.2011.02.296

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Google Scholar 

  • Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Ac 63(9):1405–1419. doi:10.1016/S0016-7037(99)00031-9

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583. doi:10.1073/pnas.95.12.6578

    Article  Google Scholar 

  • Whittleston RA, Stewart DI, Mortimer RJG, Burke IT (2013) Enhancing microbial iron reduction in hyperalkaline, chromium contaminated sediments by pH amendment. Appl Geochem 28:135–144. doi:10.1016/j.apgeochem.2012.10.003

    Article  Google Scholar 

  • Wiese B, Böhner J, Enachescu C, Würdemann H, Zimmermann G (2010) Hydraulic characterisation of the Stuttgart formation at the pilot test site for CO2 storage, Ketzin, Germany. Int J Greenh Gas Control 4(6):960–971. doi:10.1016/j.ijggc.2010.06.013

    Article  Google Scholar 

  • Wiese B, Zimmer M, Nowak M, Pellizzari L, Pilz P (2013) Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environ Earth Sci 70:3709–3726. doi:10.1007/s12665-013-2744-x

    Article  Google Scholar 

  • Würdemann H, Möller F, Kühn M, Heidung W, Christensen NP, Borm G, Schilling FR (2010) CO2SINK-From site characterisation and risk assessment to monitoring and verification: one year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany. Int J Greenh Gas Control 4(6):938–951. doi:10.1016/j.ijggc.2010.08.010

    Article  Google Scholar 

  • Zettlitzer M, Möller F, Morozova D, Lokay P, Würdemann H, the CO2SINK Group (2010) Re-establishment of the proper injectivity of the CO2-injection well Ktzi 201 in Ketzin, Germany. Int J Greenh Gas Control 4:952–959. doi:10.1016/j.ijggc.2010.05.006

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all partners in the Ketzin projects and CO2 storage center for their continued support and contributions. Special thanks go to EEW (Erdoel-Erdgas Workover GmbH) and Dr. Andrea Seibt (BWG) for their most valuable advice and operational support during the downhole sampling and to Dr. Maren Wandrey for her support during the pump test at the Ktzi 202 well and for the corresponding fluorescein measurements. Dr. Hannah Halm and Dr. Tobias Lienen (GFZ German Research Centre for Geosciences, Potsdam) are acknowledged for critical reading of the manuscript. This research was funded by the European Commission, the Federal Ministry of Economics and Technology and the Federal Ministry of Education and Research in the frame of the CO2SINK project and by the Federal Ministry for Education and Research within the GEOTECHNOLOGIEN Program in the framework of CO2MAN (CO2 Reservoir Management 03G0760A-F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilke Würdemann.

Additional information

Linda Pellizzari and Daria Morozova have contributed to the manuscript equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellizzari, L., Morozova, D., Neumann, D. et al. Comparison of the microbial community composition of pristine rock cores and technical influenced well fluids from the Ketzin pilot site for CO2 storage. Environ Earth Sci 75, 1323 (2016). https://doi.org/10.1007/s12665-016-6111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6111-6

Keywords

Navigation