Skip to main content

Advertisement

Log in

National level landslide susceptibility assessment of Turkey utilizing public domain dataset

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Landslide studies have been integrated into geographic information systems with the help of technological developments using several methods like inventory, heuristic, statistic and deterministic methods in the recent years. However, since a nationwide landslide susceptibility zoning map has not been produced for the entire territory of Turkey, this study aims to produce a landslide susceptibility map of Turkey at a national scale by utilizing publicly available datasets. In order to develop a landslide susceptibility map of Turkey at the scale of 1:2,000,000, an index-based calculation, which considers six factors (slope, lithology, local relief, rainfall, land use, seismicity) that covers the entire territory of Turkey and controls the occurrence of landslides, was applied in a 500 × 500 m pixel resolution. Each layer (factor) having various effects on landslide susceptibility has been merged into the model with assigned weights. Four different weight groups were assigned to the layer sets through expert judgement in order to capture the layer variability for landslide susceptibility in Turkey. The performances of four different weight groups were compared and evaluated by using a receiver operator characteristics curve for minimizing the uncertainty of expert judgement procedure. It was observed that the W3 group was superior to the other weight groups in prediction skills. The susceptibility map of W3 has been classified into five groups: no, low, moderate, high and very high susceptibility. The no susceptibility class represents 4.2 % of the Turkish territory (plains and low hills), low susceptibility class 36.4 %, medium susceptibility 8.3 %, high susceptibility 47.5 % and very high susceptibility class 3.6 %, mostly in the western and middle Black Sea regions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akgün A, Türk N (2010) Landslide susceptibility mapping for Ayvalık (Western Turkey) and its vicinity by multicriteria decision analysis. Environ Earth Sci 61(3):595–611. doi:10.1007/s12665-009-0373-1

    Article  Google Scholar 

  • Baltacı H, Şen LÖ, Karaca M (2010) Observing landslide-rainfall relation on Easteren Black Sea Region and determining minimum threshold values, 1st International Meteorology Symposium, 27–28 May 2010, State Water Works, Ankara, pp 356–363 (in Turkish)

  • Balteanu D, Chendes V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 124:102–112. doi:10.1016/j.geomorph.2010.03.005

    Article  Google Scholar 

  • Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estud Geol Madrid 65(1):49–65. doi:10.3989/egeol.08642.036

    Article  Google Scholar 

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Papanastassiou D, Chousianitis KG (2012) Potential suitability for urban planning and industry development by using natural hazard maps and geological-geomorphological parameters. Environ Earth Sci 66(2):537–548. doi:10.1007/s12665-011-1263-x

    Article  Google Scholar 

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Skianis GA, Chousianitis KG (2013) Assessment of rural community and agricultural development using geomorphological-geological factors and GIS in the Trikala prefecture (Central Greece). Stoch Environ Res Risk Assess 27(2):573–588. doi:10.1007/s00477-012-0602-0

    Article  Google Scholar 

  • Bayrak Y, Öztürk S, Koravos GCh, Leventakis GA, Tsapanos TM (2008) Seismicity assessment for the different regions in and around Turkey based on instrumental data: Gumbel first asymptotic distribution and Gutenberg-Richter cumulative frequency law. Nat Hazard Earth Syst 8:109–122. doi:10.5194/nhess-8-109-2008

    Article  Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102(3–4):164–177. doi:10.1016/j.enggeo.2008.03.016

    Article  Google Scholar 

  • Castellanos Abella EA, Van Westen CJ (2005) Development of a system for landslide risk assessment for Cuba. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Proceedings of the international conference on landslide risk management, 31 May–3 June 2005 Vancouver. Balkema, London, pp 1–10

    Google Scholar 

  • Castellanos Abella EA, Van Westen CJ (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 4:311–325. doi:10.1007/s10346-007-0087-y

    Article  Google Scholar 

  • CIA (2002) The world factbook 2002. Central Intelligence Agency, Washington DC. http://www.cia.gov/cia/publications/factbook/index.html. Accessed 3 Feb 2013

  • CLC (2009) Corine Land Cover 2006 database, verification 2. European Environment Agency, Copenhagen. http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-2. Accessed 16 Nov 2009

  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63(2):397–406. doi:10.1007/s12665-010-0724-y

    Article  Google Scholar 

  • CRED (2010) Disaster data: A balanced perspective. CRED Crunch, Issue No: 21. http://www.pacificdisaster.net/pdnadmin/data/documents/5283.html. Accessed 6 Jun 2013

  • Dag S, Bulut F (2012) A case study for preparing GIS based landslide susceptibility map: Çayeli (NE Turkey). Geol Eng J 1:35–62 (in Turkish)

    Google Scholar 

  • Dunn M, Hickey R (1998) The effect of slope algorithms on slope estimates within a GIS. Cartography 27(1):9–15. doi:10.1080/00690805.1998.9714086

    Article  Google Scholar 

  • Eker AM, Dikmen M, Cambazoğlu S, Düzgün HSB, Akgün H (2012) Application of artificial neural network and logistic regression methods to landslide susceptibility mapping and comparison of the results for the Ulus district, Bartın. J Fac Eng Arch Gazi Univ 27(1):163–173 (in Turkish)

    Google Scholar 

  • Eker AM, Dikmen M, Cambazoğlu S, Düzgün HSB, Akgün H (2015) Evaluation and comparison of landslide susceptibility mapping methods: a case study for the Ulus district, Bartın, northern Turkey. Int J Geogr Inf Sci 29(1):132–158. doi:10.1080/13658816.2014.953164

    Article  Google Scholar 

  • Ercanoglu M, Temiz FA (2011) Application of logistic regression and fuzzy operators to landslide susceptibility assessment in Azdavay (Kastamonu, Turkey). Environ Earth Sci 64(4):949–964. doi:10.1007/s12665-011-0912-4

    Article  Google Scholar 

  • Gaprindashvili G, Van Westen CJ (2015) Generation of a national landslide hazard and risk map for the country of Georgia. Nat Hazards. doi:10.1007/s11069-015-1958-5

    Google Scholar 

  • Garfunkel Z (2004) Origin of the Eastern Mediterranean basin: a reevaluation. Tectonophysics 391:11–34. doi:10.1016/j.tecto.2004.07.006

    Article  Google Scholar 

  • Gökçe O, Özden Ş, Demir A (2008) Disaster inventory of Turkey—spatial and statistical distribution of disasters. Ministry of Public Works and Settlement, General Directorate of Disaster Affairs, Ankara (in Turkish)

    Google Scholar 

  • Guth PL (1995) Slope and aspect calculations on gridded digital elevation models: examples from a geomorphometric toolbox for personal computers. Z Geomorphol 101:31–52

    Google Scholar 

  • Hickey R (2000) Slope angle and slope length solutions for GIS. Cartography 29(1):1–8. doi:10.1080/00690805.2000.9714334

    Article  Google Scholar 

  • Hoek E, Marinos P, Benisi M (1998) Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull Eng Geol Environ 57(2):151–160. doi:10.1007/s100640050031

    Article  Google Scholar 

  • Kıncal C, Akgün A, Koca MY (2009) Landslide susceptibility assessment in the İzmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method. Environ Earth Sci 59(4):745–756. doi:10.1007/s12665-009-0070-0

    Article  Google Scholar 

  • Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Environ 60(2):85–92. doi:10.1007/s100640000090

    Article  Google Scholar 

  • McKenzie DP (1978) Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys J Royal Astron Soc 55:217–254

    Article  Google Scholar 

  • Monod O, Kozlu H, Ghienne JF, Dean WT, Günay Y, Herisse AL, Paris F, Robardet M (2003) Late Ordovician glaciation in southern Turkey. Terra Nova 15(4):249–257. doi:10.1046/j.1365-3121.2003.00495.x

    Article  Google Scholar 

  • Nunes De Lima MV (2005) IMAGE 2000 and CLC2000. Products and Methods. JRC-IES, European Communities, Italy. EUR 21757 EN, ISBN 92-894-9862-5

  • Okalp K (2013) Landslide susceptibility assessment of Turkey by using qualitative and semi-quantitative methods, Ph.D. Dissertation, Middle East Technical University

  • Okay AI (2008) Geology of Turkey: a synopsis. Anschnitt 21:19–42

    Google Scholar 

  • Okay AI, Satir M, Siebel W (2006) Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region. In: Gee DG, Stepherson R (eds) European lithosphere dynamics, vol 32. Geological Society, Memoirs, London, pp 389–405

    Google Scholar 

  • Papadopoulou-Vrynioti K, Bathrellos GD, Skilodimou HD, Kaviris G, Makropoulos K (2013) Karst collapse susceptibility mapping using seismic hazard in a rapid urban growing area. Eng Geol 158:77–88. doi:10.1016/j.enggeo.2013.02.009

    Article  Google Scholar 

  • Papazachos BC, Comninakis PE (1971) Geophysical and tectonic features of the Aegean arc. J Geophys Res 76:8517–8533

    Article  Google Scholar 

  • Paus HL (2005) Reply of insurance industry to landslide risk, chap 8. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, West Sussex, England. doi:10.1002/9780470012659.ch8

  • Reis S, Yomralıoglu T (2005) Provincial disaster risk management using GIS, Turkish chamber of survey and cadastre engineers, 10th Scientific and technical meeting on Turkish mapping, 28 March-1 April 2005, Ankara (in Turkish)

  • Reis S, Yalçın A, Atasoy M, Nisanci R, Bayrak T, Erduran M, Sancar C, Ekercin S (2012) Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey). Environ Earth Sci 66(7):2063–2073. doi:10.1007/s12665-011-1432-y

    Article  Google Scholar 

  • Rigo de Righi M, Cortesini A (1964) Gravity tectonics in foothills structure belt of southeast Turkey. Am Assoc Petrol Geol B 48:1911–1937

    Google Scholar 

  • Rozos D, Bathrellos GD, Skilodimou HD (2011) Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus Greece. Environ Earth Sci 63(1):49–63. doi:10.1007/s12665-010-0687-z

    Article  Google Scholar 

  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD (2013) Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ Earth Sci 70(7):3255–3266. doi:10.1007/s12665-013-2390-3

    Article  Google Scholar 

  • Sabatakakis N, Koukis G, Vassiliades E, Lainas S (2013) Landslide susceptibility zonation in Greece. Nat Hazards 65:523–543. doi:10.1007/s11069-012-0381-4

    Article  Google Scholar 

  • Sengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241. doi:10.1016/0040-1951(81)90275-4

    Article  Google Scholar 

  • Şensoy S, Demircan M, Ulupınar Y, Balta İ (2013) Climate of Turkey, Turkish State Meteorological Service. http://www.mgm.gov.tr/files/en-US/climateofturkey.pdf. Accessed 6 May 2013

  • Skidmore AK (1989) A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model. Int J Geogr Inf Syst 3(4):323–334. doi:10.1080/02693798908941519

    Article  Google Scholar 

  • Tomlin CD (1990) Geographic information systems and cartographic modeling. Prentice Hall, New Jersey

    Google Scholar 

  • Tsapanos TM, Burton PW (1991) Seismic hazard evaluation for specific seismic regions of the world. Tectonophysics 194:153–169

    Article  Google Scholar 

  • TÜİK (2012) Turkish Statistical Institute. http://www.turkstat.gov.tr. Accessed 3 Feb 2013

  • Van Remortel R, Hamilton M, Hickey R (2001) Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data. Cartography 30(1):27–35. doi:10.1080/00690805.2001.9714133

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131. doi:10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Yılmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836. doi:10.1007/s12665-009-0394-9

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Middle East Technical University (METU) Research Fund Project No. BAP-03-09-2010-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haluk Akgün.

Ethics declarations

Conflict of interest

The research performed in this study was supported by the University Research Project No. BAP-03-09-2010-01 which the second author (Haluk Akgün) has received from the Middle East Technical University (METU) Research Fund.

Additional information

The product of this study can be accepted as a milestone for further research that could be performed to obtain a complete landslide susceptibility map of Turkey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okalp, K., Akgün, H. National level landslide susceptibility assessment of Turkey utilizing public domain dataset. Environ Earth Sci 75, 847 (2016). https://doi.org/10.1007/s12665-016-5640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5640-3

Keywords

Navigation