Skip to main content
Log in

Geostatistics-based regional characterization of groundwater chemistry in a sedimentary rock area with faulted setting

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Sophisticated modeling of a hydrogeological structure and the environment are crucial for underground construction. This study characterizes hydrochemical properties of groundwater in a sedimentary rock area, clarifying their spatial distribution and correlation with geologic structure, and interpreting the groundwater source and chemical evolution. Water samples, geological columns, and well logs to 1-km depth were taken at 10 sites in Horonobe of northern Japan. Toward the objectives, a 3D model of Cl concentration was produced in conjunction with resistivity logging data through kriging estimation and sequential Gaussian cosimulation. Variography shows that the dip of the main Omagari Fault is a control on the spatial correlation structure of Cl concentration. The 3D model shows that this fault and its auxiliary constitute a clear boundary between high and low saline waters, and that Cl concentrations tend to change in accord with sedimentary layer structures. The integration of stable isotope analysis suggests that deep saline water with heavy δD and δ18O originated from fossilized seawater, whereas shallow freshwater with light values is of meteoric water origin. Dilute saline water in the deep part of study area is partially attributable to dehydration of silica minerals. Vertical and lateral groundwater flows are estimated to prevail near the Omagari Fault and be general in other zones, respectively. Difference in the depth of transition zones may be caused by the dominant flow among downward, ascending, and lateral. Consequently, geostatistical techniques and data integration are useful to depict regional groundwater systems with a data set of water investigation limited by quantity and location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Annunziatellis A, Beaubien S, Bigi S, Ciotoli G, Coltella M, Lombardi S (2008) Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): implications for CO2 geological storage. Int J Greenh Gas Control 2(3):353–372. doi:10.1016/j.ijggc.2008.02.003

    Article  Google Scholar 

  • Beauheim RL, Roberts RM, Avis JD (2014) Hydraulic testing of low-permeability Silurian and Ordovician strata, Michigan Basin, southwestern Ontario. J Hydrol 509:163–178. doi:10.1016/j.jhydrol.2013.11.033

    Article  Google Scholar 

  • Bense VF, Person MA (2006) Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour Res 42(5):1–18. doi:10.1029/2005WR004480

    Article  Google Scholar 

  • Bense VF, Van den Berg EH, Van Balen RT (2003) Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands. Hydrogeol J 11(3):319–332. doi:10.1007/s10040-003-0262-8

    Article  Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028

    Article  Google Scholar 

  • Castelletto N, Gambolati G, Teatini P (2013) Geological CO2 sequestration in multi-compartment reservoirs: geomechanical challenges. J Geophys Res 118(5):2417–2428. doi:10.1002/jgrb.50180

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, pp 256–259

  • Clayton R, Friedman I, Graf DL, Mayeda TK, Meents WF, Shimp NF (1966) The origin of saline formation waters: 1. Isotopic composition. J Geophys Res 71(16):3869–3882

    Article  Google Scholar 

  • Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990) Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin. II. Isotope systematics and water mixing. Appl Geochem 5:397–413

    Article  Google Scholar 

  • Cressie N (1993) Statistics for Spatial Data, rev. ed. John Wiley & Sons. Inc

  • Desbarats AJ, Bachu S (1994) Geostatistical analysis of aquifer heterogeneity from the core scale to the basin scale: a case study. Water Resour Res 30(3):673–684

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: Geostatistical Software Library and User’s Guide (Applied Geostatistics Series), 2 edn. Oxford University Press

  • Douglas M, Clark ID, Raven K, Bottomley D (2000) Groundwater mixing dynamics at a Canadian Shield mine. J Hydrol 235:88–103. doi:10.1016/S0022-1694(00)00265-1

    Article  Google Scholar 

  • Ferrill DA, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A, Morris AP (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 9(5):1–8

    Google Scholar 

  • Flint AL, Flint LE, Kwicklis EM, Bodvarsson GS, Fabryka-martin JM (2001) Hydrology of Yucca Mountain. Nevada. Rev Geophys 39(4):447–470

    Article  Google Scholar 

  • Folch A, Mas-Pla J (2008) Hydrogeological interactions between fault zones and alluvial aquifers in regional flow systems. Hydrol Process 22:3476–3487. doi:10.1002/hyp.6956

    Article  Google Scholar 

  • Fujioka N, Saga H (1980) Geological Consideration on the Petroleum Exploration in the Tenpoku Area, Hokkaido, Japan. J Jpn Assoc Pet Technol 45(4):183–192 (in Japanese with English abstract)

    Article  Google Scholar 

  • Fukusawa H (1985) Late Neogene formations in the Tempoku-Haboro region, Hokkaido, Japan—stratigraphy reinvestigation of the Wakkanai and Koetoi Formation. J Geol Soc Jpn 91(12):833–849. doi:10.5575/geosoc.91.833

    Article  Google Scholar 

  • Gassiat C, Gleeson T, Lefebvre R, McKenzie J (2013) Hydraulic fracturing in faulted sedimentary basins: numerical simulation of potential contamination of shallow aquifers over long time scales. Water Resour Res 49(12):8310–8327. doi:10.1002/2013WR014287

    Article  Google Scholar 

  • Geological Survey of Japan, AIST (2012) Seamless digital geologic map of Japan 1:200,000, July 3, 2012 version. Research Information Database DB084

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Grobe M, Machel HG (2002) Saline groundwater in the Münsterland Cretaceous Basin, Germany: clues to its origin and evolution. Mar Petrol Geol 19(3):307–322

    Article  Google Scholar 

  • Hama K, Kunimaru T, Metcalfe R, Martin AJ (2007) The hydrogeochemistry of argillaceous rock formations at the Horonobe URL site, Japan. Phys Chem Earth 32:170–180. doi:10.1016/j.pce.2005.12.008

    Article  Google Scholar 

  • Higashinaka M (2004) Gravity data reprocessing. JNC-TJ5410-2004-003. (in Japanese with English abstract)

  • Higashinaka M, Tsukuwi R, Ohta Y (2002) Exploration of the Underground Structure Using Seismic reflection method in the Horonobe underground research program. JNC-TJ1410-2002-002. (in Japanese with English abstract)

  • Hirooka E (1962) Petroleum Geological Study on Tenpoku District in Hokkaido, Japan. J Jpn Assoc Pet Technol 27(6):323–344 (in Japanese with English abstract)

    Article  Google Scholar 

  • Ikawa R, Machida I, Koshigai M, Nishizaki S, Marui A (2014) Coastal aquifer system in late Pleistocene to Holocene deposits at Horonobe in Hokkaido, Japan. Hydrogeol J 22(5):987–1002. doi:10.1007/s10040-014-1106-4

    Article  Google Scholar 

  • Ishii E (2012) Microstructure and origin of faults in siliceous mudstone at the Horonobe Underground Research Laboratory site, Japan. J Struct Geol 34:20–29. doi:10.1016/j.jsg.2011.11.001

    Article  Google Scholar 

  • Ishii E, Yasue K, Tanaka T, Tsukuwi R, Matsuo K, Sugiyama K, Matsuo S (2006) Three-dimensional distribution and hydrogeological properties of the Omagari Fault in the Horonobe area, northern Hokkaido, Japan. J Geol Soc Jpn 112(5):301–314. doi:10.5575/geosoc.112.301 (in Japanese with English abstract)

    Article  Google Scholar 

  • Iskandar I, Koike K, Sendjaja P (2012) Identifying groundwater arsenic contamination mechanisms in relation to arsenic concentrations in water and host rocks. Environ Earth Sci 65(7):2015–2026. doi:10.1007/s12665-011-1182-x

    Article  Google Scholar 

  • Iwatsuki T, Ishii E, Niizato T (2009) Scenario development of long-term evolution for deep hydrochemical conditions in Horonobe area, Hokkaido, Japan. J Geogr 118(4):700–716 (in Japanese with English abstract)

    Article  Google Scholar 

  • Kharaka YK, Hanor JS (2005) Deep fluids in the continents: I. Sedimentary basins. In: Drever JI (ed) Surface and ground water, weathering and soils, treatise on geochemistry, vol 5. Elsevier, pp 499–540

  • Kiho K, Oyama T, Mahara Y (1999) Production of the compaction type pore water extraction apparatus and its application to the deep-seated sedimentary rock. J Jpn Soc Eng Geol 40(5):260–269 (in Japanese with English abstract)

    Article  Google Scholar 

  • Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C (2001) Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochim Cosmochim Acta 65(22):4087–4101

    Article  Google Scholar 

  • Koaze T, Nogami M, Ono Y, Hirakawa K (eds) (2003) Regional Geomorphology of the Japanese Islands, vol 2. Geomorphology of Hokkaido. Univ. Tokyo Press, Tokyo

    Google Scholar 

  • Kozai N, Ohnuki T, Iwatsuki T (2013) Characterization of saline groundwater at Horonobe, Hokkaido, Japan by SEC-UV-ICP-MS: speciation of uranium and iodine. Water Res 47(4):1570–1584. doi:10.1016/j.watres.2012.12.017

    Article  Google Scholar 

  • Krooss BM, Leythaeuser D (1988) Experimental measurements of the diffusion parameters of light hydrocarbons in water-saturated sedimentary rocks—II. Results and geochemical significance. Org Geochem 12(2):91–108

    Article  Google Scholar 

  • Lachmar TE (1994) Application of fracture-flow hydrogeology to acid-mine drainage at the Bunker Hill Mine, Kellogg, Idaho. J Hydrol 155:125–149

    Article  Google Scholar 

  • Liu CX, Koike K (2007) Extending multivariate space-time geostatistics for environmental data analysis. Math Geol 39(3):289–305. doi:10.1007/s11004-007-9085-9

    Article  Google Scholar 

  • Llanos EM, Zarrouk SJ, Hogarth RA (2015) Numerical model of the Habanero geothermal reservoir, Australia. Geothermics 53:308–319. doi:10.1016/j.geothermics.2014.07.008

    Article  Google Scholar 

  • Matsuo K, Negi T, Yokoi K, Takahashi T, Teshima M (2004) The Survey of the Omagari Fault Using Audio Frequency Magnetotelluric Method in Horonobe Research Project for the Subsurface Environment. JNC-TJ5410-2004-002. (in Japanese with English abstract)

  • Mayer A, May W, Lukkarila C, Diehl J (2007) Estimation of fault-zone conductance by calibration of a regional groundwater flow model: Desert Hot Springs, California. Hydrogeol J 15(6):1093–1106. doi:10.1007/s10040-007-0158-0

    Article  Google Scholar 

  • McIntosh JC, Walter LM (2006) Paleowaters in Silurian-Devonian carbonate aquifers: geochemical evolution of groundwater in the Great Lakes region since the Late Pleistocene. Geochim Cosmochim Ac 70(10):2454–2479. doi:10.1016/j.gca.2006.02.002

    Article  Google Scholar 

  • Mukherjee A, Fryar AE (2008) Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Appl Geochem 23(4):863–894. doi:10.1016/j.apgeochem.2007.07.011

    Article  Google Scholar 

  • Myers DE (1982) Matrix formulation of co-kriging. Math Geol 14(3):249–257

    Article  Google Scholar 

  • Nakata K, Hasegawa T (2010) Research and development on groundwater dating (Part 10)—Application of groundwater dating by using 4He and 36Cl to groundwater in Horonobe, Hokkaido-, CRIEPI research Report, N09027. (in Japanese with English abstract)

  • Neuzil CE (2003) Hydromechanical coupling in geologic processes. Hydrogeol J 11(1):41–83. doi:10.1007/s10040-002-0230-8

    Article  Google Scholar 

  • Niizato T, Yasue K (2005) A study on the long-term stability of the geological environments in and around the Horonobe area—consideration of site specific features in assessing of the long-term stability of the geological environments. J Nucl Fuel Cycle Environ 11:125–137 (in Japanese with English abstract)

    Article  Google Scholar 

  • Ogura N, Kamon M (1992) The subsurface structures and hydrocarbon potentials in the Tenpoku and Haboro area, the northern Hokkaido, Japan. J Jpn Assoc Pet Technol 57(1):32–44 (in Japanese with English abstract)

    Article  Google Scholar 

  • Oka T (1986) Distribution and tectonic evolution of Late Cenozoic basins in Hokkaido. Monogr Assoc Geol Collab Jpn 31:295–320 (in Japanese with English abstract)

    Google Scholar 

  • Oka T, Igarashi Y (1997) Latest Cenozoic formations in the northern part of Teshio Plain, Hokkaido—sedimentary facies and pollen stratigraphy—in Commemorative Volume on Prof. Kato M. Oka and Kondo (Eds.), pp 341–365. (in Japanese with English abstract)

  • Omar H, Arida H, Daifullah A (2009) Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite. Appl Clay Sci 44(1–2):21–26. doi:10.1016/j.clay.2008.12.013

    Article  Google Scholar 

  • Ota K, Abe H, Kunimaru T (2011) Horonobe Underground Research Laboratory project Synthesis of Phase I Investigation 2001–2005, Volume Geoscientific Research. JAEA-Research-2010-068, Japan Atomic Energy Agency

  • Rankama K (1954) Isotope geology. Pergamon Press Ltd, London

    Google Scholar 

  • Remy N, Boucher A, Wu JB (2011) Applied geostatistics with SGeMS: a user’s guide, reprint edn. Cambridge University Press

  • Rühaak W (2015) 3-D interpolation of subsurface temperature data with measurement error using kriging. Environ Earth Sci 73:1893–1900. doi:10.1007/s12665-014-3554-5

    Article  Google Scholar 

  • Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11(1):7–40. doi:10.1007/s10040-002-0241-5

    Article  Google Scholar 

  • Sasamoto H, Arthur RC, Hama K (2011) Interpretation of undisturbed hydrogeochemical conditions in Neogene sediments of the Horonobe area, Hokkaido, Japan. Appl Geochem 26(8):1464–1477. doi:10.1016/j.apgeochem.2011.05.020

    Article  Google Scholar 

  • Seebeck H, Nicol A, Stern TA, Bibby HM, Stagpoole V (2010) Fault controls on the geometry and location of the Okataina Caldera, Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 190:136–151. doi:10.1016/j.jvolgeores.2009.04.011

    Article  Google Scholar 

  • Shouakar-Stash O, Alexeev SV, Frape SK, Alexeeva LP, Drimmie RJ (2007) Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl Geochem 22(3):589–605. doi:10.1016/j.apgeochem.2006.12.005

    Article  Google Scholar 

  • Shukla R, Ranjith P, Haque A, Choi X (2010) A review of studies on CO2 sequestration and caprock integrity. Fuel 89(10):2651–2664. doi:10.1016/j.fuel.2010.05.012

    Article  Google Scholar 

  • Simmons C, Narayan K, Woods J, Herczeg A (2002) Groundwater flow and solute transport at the Mourquong saline-water disposal basin, Murray Basin, southeastern Australia. Hydrogeol J 10(2):278–295. doi:10.1007/s10040-002-0192-x

    Article  Google Scholar 

  • Stein ML (1987) Minimum norm quadratic estimation of spatial variograms. J Am Stat Assoc 82(399):765–772

    Article  Google Scholar 

  • Takahashi K, Fukusawa H, Wada N, Hoyanagi K, Oka T (1984) Neogene stratigraphy and paleogeography in the area along the Sea of Japan of northern Hokkaido. Earth Sci (Chikyu Kagaku) 38(5):299–312 (in Japanese with English abstract)

    Google Scholar 

  • Tarcan G, Gemici Ü (2003) Water geochemistry of the Seferihisar geothermal area, İzmir, Turkey. J Volcanol Geoth Res 126:225–242. doi:10.1016/S0377-0273(03)00149-5

    Article  Google Scholar 

  • Teng Y, Koike K (2007) Three-dimensional imaging of a geothermal system using temperature and geological models derived from a well-log dataset. Geothermics 36(6):518–538. doi:10.1016/j.geothermics.2007.07.006

    Article  Google Scholar 

  • Tucker ME (2001) Sedimentary petrology: an introduction to the origin of sedimentary rocks, 3rd edn. Wiley-Blackwell, pp 212–213

  • White DE, Hem JD, Waring GA (1963) Chemical Composition of Subsurface Waters. In: Fleischer M (ed), Data of geochemistry, Sixth edn. United States Geological Survey

  • Yager RM, Kappel WM, Plummer LN (2007) Origin of halite brine in the Onondaga Trough near Syracuse, New York State, USA: modeling geochemistry and variable-density flow. Hydrogeol J 15:1321–1339. doi:10.1007/s10040-007-0186-9

    Article  Google Scholar 

  • Yamamoto H (1979) The geologic structure and the sedimentary basin off northern part of the Hokkaido Island. J Jpn Assoc Pet Technol 44(5):260–267 (in Japanese with English abstract)

    Article  Google Scholar 

  • Yamamoto T, Shimo M, Fujiwara Y, Hattori H, Tadokoro T, Iwama H, Nago M, Kumamoto S (2002) HDB-1 borehole investigation in Horonobe underground research center. JNC-TJ1400-2002-010. (in Japanese with English abstract)

  • Yasue K, Ishii E (2005) Clarification of the accurate distribution of the Omagari-Toyotomi fault in the Horonobe Town, northern Hokkaido. Act Fault Res 25:39–46 (in Japanese with English abstract)

    Google Scholar 

  • Yu WH, Harvey CM, Harvey CF (2003) Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resour Res 39(6):WES1–WES17. doi:10.1029/2002WR001327

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the researchers of Horonobe Underground Research Laboratory, JAEA, for providing data sets, valuable discussions and suggestions. Sincere thanks are extended to two anonymous reviewers for their valuable comments and suggestions that helped improve the clarity of the manuscript. This work was partially supported by JSPS KAKENHI grant number 26120519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuaki Koike.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Kashiwaya, K. & Koike, K. Geostatistics-based regional characterization of groundwater chemistry in a sedimentary rock area with faulted setting. Environ Earth Sci 75, 829 (2016). https://doi.org/10.1007/s12665-016-5619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5619-0

Keywords

Navigation