Skip to main content

Advertisement

Log in

Drought variability in Inner Mongolia of northern China during 1960–2013 based on standardized precipitation evapotranspiration index

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The standardized precipitation evapotranspiration index (SPEI) was widely used in climatology and hydrology studies, because its combination the sensitivity of the PDSI to the changes in ET (caused by air temperature fluctuations and trends) with the simplicity of calculation, but also has the robustness of the multitemporal nature of the SPI. In this article, the temporal and spatial pattern of drought based on SPEI was explored in the Inner Mongolia during 1960–2013. The results showed that SPEI can effectively reveal the multiscalar feature of drought, and the effect of air temperature rising on drought severity and cumulative effect of drought itself. SPEI is suitable for those longer time scales such as 6-month or longer, and better in semi-humid and semi-arid areas than in arid area, due to much zero values or extreme maximum values at shorter time scale or in arid area. Generally, there is a drying trend in the whole Inner Mongolia, and a very severe drought was revealed at multi-time scales during the 2000s. Annual SPEI change at 6-month scale from APR to SEP indicated that drought in plant-growth season is very frequent and increasingly serious, and it should be given more attention. The severities of drought vary in different sub-regions. A significant abrupt change point of drought change trend in the whole Inner Mongolia at 12-month time scale was diagnosed in late 1990s, while this abrupt point in the middle-west subarea is a little earlier than those in the northeast subarea and the southeast subarea. This lasting severe drought should be the result of joint action of increasing air temperature and obviously decreasing precipitation since 2000s. At the same time, the most severe and frequent drought mainly occurred along the Sino-Mongolia border and the Horqin Sandy Land, while the continuous belt along the Da Hinggan Ling Mountains, the Yinshan Mountains, the Hetao Plain and the Mu Us Sandy Land is the area with relative slight drying trend during the last decades. Drought spatial pattern indicated by SPEI was supported by spatial distribution of temperature vegetation drought index based on remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Begueria S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34:3001–3023. doi:10.1002/joc.3887

    Article  Google Scholar 

  • Byun HR, Wilhite DA (1999) Objective quantification of drought severity and duration. J Clim 12:2747–2756

    Article  Google Scholar 

  • Chun X, Dan D, Bi LG, Liu MP, Liu Y, Hu HDL (2013) Climate change in Alxa Plateau over recent 60 years. J China Hydrol 33(2):43–50

    Google Scholar 

  • Dai AG (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2:45–65. doi:10.1002/wcc.81

    Article  Google Scholar 

  • Demaree GR, Nicolis C (1990) Onset of sahelian drought viewed as a fluctuation-induced transition. Quart J R Meteorol Soc 116(491):221–238

    Article  Google Scholar 

  • Diro GT, Sushama L, Martynov A, Jeong DI, Verseghy D, Winger K (2014) Land-atmosphere coupling over North America in the CRCM5. J Geophys Res. doi:10.1002/2014JD021677

    Google Scholar 

  • Edwards DC, McKee TB (1997) Characteristics of 20th century drought in the United States at Multiple Scales. Atmos Sci Paper No. 634, Climatology Report 97-2, Colarado State University, Fort Collins, pp 1–30

  • Feng J, Yan DH, Li CZ, Yu FL, Zhan C (2014) Assessing the impact of climatic factors on potential evapotranspiration in droughts in North China. Quat Int 336:6–12. doi:10.1016/j.quaint.2013.06.011

    Article  Google Scholar 

  • Fuchs B, Svoboda M, Nothwehr J, Poulsen C, Sorensen W, Guttman N (2012) A new national drought risk Atlas for the US from the National Drought Mitigation Center. http://www.clivar.org/sites/default/files/Fuchs.pdf

  • Giannakopoulos C, Sager PL, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global Planet Change 68(3):209–224

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(4):L08707. doi:08710.01029/02006GL025734

  • Goossens C, Berger A (1987) How to recognize an abrupt climatic change? In: Berger WH, Labeyrie LD (eds) Abrupt climatic change, evidence and implications, NATO ASI series C: mathematical and physical sciences 216. D. Reidel publishing company Dordrecht, Holland, pp 31–45

  • Goudie AS, Middleton NJ (1992) The changing frequency of dust storms through time. Clim Change 20(3):197–225. doi:10.1007/BF00139839

    Article  Google Scholar 

  • Hao YX, Han FL, Xu J, Dong CY, Huang FR (2010) The influence of urban heat island on climatic change of Xilinhot. Meteorol J Inner Mongolia 6:34–37

    Google Scholar 

  • Hayes M, Wilhite DA, Svoboda M, Vanyarkho O (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80:429–438

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces f or global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hu Q, Pan FF, Pan XB, Zhang D, Li QY, Pan ZH, Wei YR (2015) Spatial analysis of climate change in Inner Mongolia during 1961–2012, China. Appl Geogr 60(SI):254–260

    Article  Google Scholar 

  • Huang J, Sun SL, Xue Y, Zhang JC (2015) Changing characteristics of precipitation during 1960–2012 in Inner Mongolia, northern China. Meteorol Atmos Phys 127(3):257–271. doi:10.1007/s00703-014-0363-z

    Article  Google Scholar 

  • Hutchinson MF (2004) ANUSPLIN Version 4.3 User Guide. Canberra: the Australia National University, Center for Resource and Environment Studies 2004. http://cres.anu.edu.au/outputs/anusplin.Php

  • Jensen ME, Burman RD, Allen RG (eds) (1990) Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Engineering Practices No. 70. Am Soc Civil Eng New York, p 360

  • Jeong DI, Sushama L, Khaliq MN (2014) The role of temperature in drought projections over North America. Clim Change 127:289–303. doi:10.1007/s10584-014-1248-3

    Article  Google Scholar 

  • Jin GY (2006) New thinking: how to process extraordinary flood data in frequency analysis. J China Hydrol 26(3):27–32

    Google Scholar 

  • Keyantash J, Dracup JA (2002) The quantification of drought: an evaluation of drought indices. Bull Am Meteorol Soc 83:1167–1180

    Article  Google Scholar 

  • Lehner B, Doll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim Change 75:273–299

    Article  Google Scholar 

  • Li WG, Yi X, Hou MT, Chen HL, Chen ZL (2012) Standardized precipitation evapotranspiration index shows drought trends in China. Chin J Eco Agric 20(5):643–649. doi:10.3724/SP.J.1011.2012.00643

    Article  Google Scholar 

  • Linares JC, Camarero JJ (2011) From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob Change Biol 18:1000–1015

    Article  Google Scholar 

  • Liu ZH, Li LT, McVicar TR, Van Niel TG, Yang QK, Li R (2008) Introduction of the professional interpolation software for meteorology data: ANU SPLINN. Meteorol Monogr 34(2):92–100

    Google Scholar 

  • Ma ZG, Fu CB (2001) Trend of surface humid index in the arid area of northern China. Acta Meteorol Sin 59(6):737–746

    Google Scholar 

  • Martínez-Villalta J, López BC, Adell N, Badiella L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Chang Biol 14:2868–2881

    Article  Google Scholar 

  • Mavromatis T (2007) Drought index evaluation for assessing future wheat production in Greece. Int J Climatol 27(7):911–924. doi:10.1002/joc.1444

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proceeding of the Ninth Conference on Applied Climatology. American Meteorological Society, Boston, pp 179–184

    Google Scholar 

  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416–417:182–205. doi:10.1016/j.jhydrol.2011.10.024

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1):202–216. doi:10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Moraes JM, Pellegrino HQ, Ballester MV, Martinelli LA, Victoria R, Krusche AV (1998) Trends in hydrological parameters of a southern Brazilian watershed and its relation to human induced changes. Water Resour Manag 12:295–311. doi:10.1023/A:1008048212420

    Article  Google Scholar 

  • Morid S, Smakhtin V, Moghaddasi M (2006) Comparison of seven meteorological indices for drought monitoring in Iran. Int J Climatol 26:971–985

    Article  Google Scholar 

  • Nandintsetseg B, Shinoda M (2013) Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Nat Hazards 66:995–1008. doi:10.1007/s11069-012-0527-4

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological droughts. US Department of Commerce Weather Bureau Research Paper 45, 58

  • Qian WH, Qin A (2008) Precipitation division and climate shift in China from 1960 to 2000. Theor Appl Climatol 93(1–2):1–17

    Article  Google Scholar 

  • Romm J (2011) The next dust bowl. Nature 478:450–451. doi:10.1038/478450a

    Article  Google Scholar 

  • Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature—vegetation index space for assessment of surface moisture status. Remote Sens Environ 79(2):213–224

    Article  Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) On the cause of the 1930s Dust Bowl. Science 303(5665):1855–1859. doi:10.1126/science.1095048

    Article  Google Scholar 

  • Sha S, Guo N, Li YH, Han T, Zhao YX (2014) Introduction of application of temperature vegetation dryness index in China. J Arid Meteorol 32(1):128–134. doi:10.11755/j.issn.1006-7639(2014)-01-0128

    Google Scholar 

  • Shafer BA, Dezman LE (1982) Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. Proceedings of the Western snow conference. Colorado State University, Fort Collins, pp 164–175

    Google Scholar 

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–440. doi:10.1038/nature11575

    Article  Google Scholar 

  • Shinoda M, Nachinshonhor GU, Nemoto M (2010) Impact of drought on vegetation dynamics of the Mongolian steppe: a field experiment. J Arid Environ 74(1):63–69. doi:10.1016/j.jaridenv.2009.07.004

    Article  Google Scholar 

  • Sneyers R (1975) Sur l’analyse statistique des s´eries d’observations. Technical Note 143, WMO, Geneva

  • Sternberg T (2011) Regional drought has a global impact. Nature 472:169

    Article  Google Scholar 

  • Sternberg T, Thomas D, Middleton N (2011) Drought dynamics on the Mongolian steppe 1970–2006. Int J Climatol. doi:10.1002/joc.2195

    Google Scholar 

  • Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Stephens S (2002) The drought monitor. Bull Am Meteorol Soc 83:1181–1192

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • van der Schrier G, Jones PD, Briffa KR (2011) The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J Geophys Res 116:D03106. doi:10.1029/2010JD015001

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. doi:10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Wang HJ (2001) The weakening of the Asian monsoon circulation after the end of 1970s. Adv Atmos Sci 18:376–386

    Article  Google Scholar 

  • Wang L, Chen W (2014) Applicability analysis of standardized precipitation evapotranspiration index in drought monitoring in China. Plateau Meteorol 33(2):423–431. doi:10.7522/j.issn.1000-0534.2013.00048

    Google Scholar 

  • Wang BJ, Huang YX, Tao JH, Li DL, Wang PX (2006) Regional features and variations of water vapor in northwest China. J Glaciol Geocryol 28(1):15–21

    Google Scholar 

  • Wang T, Wu W, Xue X, Han ZW, Zhang WM, Sun QW (2004) Spatial-temporal changes of sandy desertified land during last 5 decades in northern China. Acta Geogr Sin 59(2):203–212

    Google Scholar 

  • Wilhite D (2000) Drought as a natural hazard: concepts and definitions. In: Whilhite DA (ed) Drought: a global assessment. Routledge, London, pp 3–18

    Google Scholar 

  • Wilhite DA, Sivakumar MVK, Wood DA (2000) Early warning systems for drought preparedness and drought management. In: Proceedings of an expert group meeting Lisbon, Portugal. World Meteorological Organization, Geneva

  • Williams AP, Xu Ch, McDowell NG (2011) Who is the new sheriff in town regulating boreal forest growth? Environ Res Lett. doi:10.1088/1748-9326/6/4/041004

    Google Scholar 

  • Wu H, Hayes MJ, Welss A, Hu Q (2001) An evaluation the standardized precipitation index, the china-z index and the statistical z-score. Int J Climatol 21:745–758

    Article  Google Scholar 

  • Wu H, Svoboda MD, Hayes MJ, Wilhite DA, Wen FJ (2007) Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int J Climatol 27:65–79. doi:10.1002/joc.1371

    Article  Google Scholar 

  • Yu MX, Li QF, Hayes MJ, Svoboda MD, Heime RR (2014) Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int J Climatol 34:545–558. doi:10.1002/joc.3701

    Article  Google Scholar 

  • Zhao FF, Xu ZX, Huang JX, Li JY (2008) Monotonic trend and abrupt changes for major climate variables in the headwater catchment of the Yellow River basin. Hydrol Process 22:4587–4599. doi:10.1002/hyp.7063

    Article  Google Scholar 

  • Zhuang SW, Zuo HC, Ren PC, Xiong GJ, Li BD, Dong WC, Wang LY (2013) Application of standardized precipitation evapotranspiration index in China. Clim Environ Res 18(5):617–625. doi:10.3878/j.issn.1006-9585.2012

    Google Scholar 

  • Zou X, Zhai P, Zhang Q (2005) Variations in droughts over China: 1951–2003. Geophys Res Lett 32(4):L04707. doi:10.1029/2004GL021853

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Western Light Talents Training Program of Chinese Academy of Sciences, the National Natural Science Foundation of China (40801003), the National Basic Research Program of China (2009CB421308), and the Science and Technology Program of Gansu Province (1308RJZA314). The authors are grateful to several reviewers for their valuable comments and advices to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Kang, W. & Wang, T. Drought variability in Inner Mongolia of northern China during 1960–2013 based on standardized precipitation evapotranspiration index. Environ Earth Sci 75, 145 (2016). https://doi.org/10.1007/s12665-015-4996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4996-0

Keywords

Navigation