Skip to main content
Log in

Environmental control on a land–sea transitional setting: integrated sedimentological, geochemical and faunal approaches

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Because of their location at the interface between sea and emerged lands, so-called transitional environments are characterized by strong spatial and temporal variability in terms of sedimentological, physicochemical, and geochemical parameters. An increasing number of studies put forward the use of bioindicators as a tool for environmental monitoring. However, the sensitivity to these environmental parameters is commonly tested separately, even though it is known that interactions are numerous within this complex ecosystem. An integrated methodological study was conducted in Lake Varano (Italy). On the basis of 45 spatially distributed samples throughout the area and selected environmental parameters (trace elements, organic matter, clay mineral assemblages, grain size of sediment, and water characteristics), four factors are identified. The Lake Varano ecosystem is predominantly influenced by terrigenous inputs (first-order factor). The clastic fractions of the sediments supply a large range of trace elements, occasionally in relatively high concentrations. Under such circumstances, despite occasionally exceeding of threshold limits, the trace element pollution can generally be ruled out. The organic content combined with depth is the second key factor. In Lake Varano, the organic content is high and may lead to seasonal eutrophication. As a third-order factor, although only analyzed once, oxygen, ORP, salinity, and pH gradients show that foraminiferal diversity is positively influenced by more saline conditions. The fourth-order factor is the sediment size. To conclude, this paper illustrates the interest in and need to conduct a detailed, integrated, sedimentological study of a site prior to any examination of its ecological status (possible occurrences of sources of pollution).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alve E (1995) Benthic foraminiferal responses to estuarine pollution: a review. J Foraminifer Res 25:190–203

    Article  Google Scholar 

  • Alve E, Murray JW (1999) Marginal marine environments of the Skagerrak and Kattegat: a baseline study of living (stained) benthic foraminiferal ecology. Palaeogeogr Palaeoclimatol Palaeoecol 146:171–193

    Article  Google Scholar 

  • Armynot du Châtelet E, Bout-Roumazeilles V, Riboulleau A, Trentesaux A (2009a) Sediment (grain size and clay mineralogy) and organic matter quality control on living benthic foraminifera. Rev Micropaleontol 52:75–84

    Article  Google Scholar 

  • Armynot du Châtelet E, Degré D, Sauriau P-G, Debenay J-P (2009b) Distribution of living benthic foraminifera in relation with environmental variables within the Aiguillon cove (Atlantic coast, France): improving knowledge for paleoecological interpretation. Bull Soc Geol France 180:131–144

    Article  Google Scholar 

  • Armynot du Châtelet E, Gebhardt K, Langer MR (2011) Coastal pollution monitoring: foraminifera as tracers of environmental perturbation in the port of Boulogne-sur-Mer (Northern France). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 262:91–116

    Article  Google Scholar 

  • Armynot du Châtelet E, Frontalini F, Guillot F, Recourt P, Ventalon S (2013) Surface analysis of agglutinated benthic foraminifera through ESEM-EDS and Raman analyses: an expeditious approach for tracing mineral diversity. Mar Micropaleontol 105(18–29):18–29

    Article  Google Scholar 

  • Barnes RSK (1991) European estuaries and lagoons: a personal overview of problems and possibilities for conservation and management. Aquat Conserv 1:79–87

    Article  Google Scholar 

  • Baxter SJ, Oliver JD (2005) The spatial prediction of soil mineral N and potentially available N using elevation. Geoderma 128:325–339

    Article  Google Scholar 

  • Belmonte G, Scirocco T, Denitto F (2011) Zooplankton composition in Lake Varano (Adriatic Sea coast, Italy). Ital J Zool 78:370–378

    Article  Google Scholar 

  • Bertazzon S, Micheletti C, Critto A, Marcomini A (2006) Spatial analysis in ecological risk assessment: pollutant bioaccumulation in clams Tapes philipinarum in the Venetian lagoon (Italy). Comput Environ Urban Syst 30:880–904

    Article  Google Scholar 

  • Bout-Roumazeilles V, Cortijo E, Labeyrie L, Debrabant P (1999) Clay mineral evidence of nepheloid layer contribution to the Heinrich layers in the Northwest Atlantic. Palaeogeogr Palaeoclimateol Palaeoecol 146:211–228

    Article  Google Scholar 

  • Breber P, Scirocco T (1998) Open-sea mussel farming in Southern Italy. Eastfish Magazine 22:36–38

  • Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London

    Book  Google Scholar 

  • Carroll ZL, Oliver MA (2005) Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma 128:354–374

    Article  Google Scholar 

  • Chamley H (1989) Clay sedimentology. Spinger, Berlin

    Book  Google Scholar 

  • Dauvin J-C, Ruellet T (2009) The estuarine quality paradox: is it possible to define an ecological quality status for specific modified and naturally stressed estuarine ecosystems? Mar Pollut Bull 59:38–47

    Article  Google Scholar 

  • DM 56/2009, The Italian guide line DM 56/2009: Decreto del Ministero dell’Ambiente, e della Tutela del Territorio e del Mare, n° 56, 14 Aprile 2009. Regolamento recante «Criteri tecnici per il monitoraggio dei corpi idrici e l’identificazione delle condizioni di riferimento per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante Norme in materia ambientale, predisposto ai sensi dell’articolo 75, comma 3, del decreto legislativo medesimo». (09G0065) (GU SerieGenerale n.124 del 30-5-2009—Suppl. Ordinario n. 83)

  • Esquevin J (1969) Influence de la composition chimique des argiles sur la cristallinité. Bull Centre Rech Pau—SNPA 3:147–154

    Google Scholar 

  • Frontalini F, Coccioni R (2011) Benthic foraminifera as bioindicators of pollution: a review of Italian research over the last three decades. Rev Micropaléontol 54:115–127

    Article  Google Scholar 

  • Frontalini F, Armynot du Châtelet E, Debenay J-P, Coccioni R, Bancalà G (2011a) Benthicforaminifera in coastallagoons: distributional patterns and biomonitoring implications. In: Friedman AG (ed) Lagoons: biology, management and environmental impact. Nova Science Publishers Inc., New York, pp 39–72

    Google Scholar 

  • Frontalini F, Semprucci F, Coccioni R, Balsamo M, Bittoni P, Covazzi-Harriage A (2011b) On the quantitative distribution and community structure of the meio and macrofaunal communities in the coastal area of the Central Adriatic Sea (Italy). Environ Monit Assess 180:325–344. doi:10.1007/s10661-010-1791-y

    Article  Google Scholar 

  • Frontalini F, Margaritelli G, Francescangeli F, Rettori R, Armynot du Châtelet E, Coccioni R (2013) Benthic foraminiferal assemblages and biotopes of a coastal lake: the case study of Lake Varano (southern Italy). Acta Protozool 52:147–160

    Google Scholar 

  • Frontalini F, Semprucci F, Armynot du Châtelet E, Francescangeli F, Margaritelli G, Rettori R, Spagnoli F, Balsamo M, Coccioni R (2014) Biodiversity trends of the meiofaunal and foraminiferal assemblages of Lake Varano (southern Italy). Proc Biol Soc Wash 127:7–22

    Article  Google Scholar 

  • Hayward BW, Grenfell H, Cairns G, Smith A (1996) Environmental controls on benthic foraminiferal and thecamoebian associations in a New Zealand tidal inlet. J Foraminifer Res 26:150–171

    Article  Google Scholar 

  • Hayward BW, Scott GH, Grenfell HR, Carter R, Lipps JH (2004) Estimation of tidal elevation and salinity histories of sheltered harbours and estuaries using benthic foraminifera. Holocene 14:218–232

    Article  Google Scholar 

  • Ligero RA, Barbera M, Casas-Ruiz M, Sales D, Lopez-Aguayo F (2002) Dating of marine sediments and time evolution of heavy metal concentration in the Bay of Cadiz, Spain. Environ Pollut 118:97–108

    Article  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Maksymowska D, Richard P, Piekarek-Jankowska HRP (2000) Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea). Estuar Coast Shelf Sci 51:585–598

    Article  Google Scholar 

  • Manzari C, Fosso B, Marzano M, Annese A, Caprioli R, D’Erchia AM, Intranuovo M, Gissi C, Santamaria M, Picardi E, Sgaramella G, Scorrano S, Piraino S, Stabili L, Pesole G (2015) The influence of invasive jellyfish blooms on the aquaticmicrobiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy. Biol Invasions 17:923–940

    Article  Google Scholar 

  • Martins MVA, Silva F, Laut LLM, Frontalini F, Clemente IMMM, Miranda P, Figueira R, Sousa SHM, Dias JMA (2015) Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro lagoon (Portugal). PLoS One. doi:10.1371/journal.pone.0118077

    Google Scholar 

  • Marzano CN, ScaleraLiaci L, Fianchini A, Gravina F, Mercurio M, Corriero G (2003) Distribution, persistence and change in the macrobenthos of the lagoon of Lesina (Apulia, southern Adriatic Sea). Oceanol Acta 26:57–66

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  Google Scholar 

  • Millet B, Guelorget O (1994) Spatial and seasonal variability in the relationships between benthic communities and physical environment in a lagoon ecosystem. Mar Ecol Prog Ser 108:161–174

    Article  Google Scholar 

  • Molinaroli E, Sarretta A, Ferrarin C, Masiero E, Specchiulli A, Guerzoni S (2014) Sediment grain size and hydrodynamics in Mediterranean coastal lagoons: integrated classification of abiotic parameters. J Earth Syst Sci 123:1097–1114

    Article  Google Scholar 

  • MSFD (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (marine strategy framework directive)

  • Murray JW (2001) The niche of benthic foraminifera, critical thresholds and proxies. Mar Micropaleontol 41:1–7

    Article  Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nixon S (1988) Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnol Oceanogr 33:1005–1025

    Article  Google Scholar 

  • Petschick R (1997) Powder diffraction software. MacDiff. Freeware: http://www.geol-pal.uni-frankfurt.de/Staff/Homepages/Petschick/classicsoftware.html#MacDiff

  • Polemio M, Di Cagno M, Virga R (2000) Le acque sotterranee del Gargano: risorse idriche integrative e di emergenza. Acque Sotterranee 68:41–58

    Google Scholar 

  • Scott DB, Medioli FS, Schafer CT (2001) Monitoring in coastal environments using foraminifera and thecamoebian indicators. Cambridge University Press, New York

    Book  Google Scholar 

  • Semprucci F, Moreno M, Sbrocca C, Rocchi M, Albertelli G, Balsamo M (2013) The nematode assemblage as a tool for the assessment of marine ecological quality status: a case-study in the Central Adriatic Sea. Mediterr Mar Sci 14:48–57

    Google Scholar 

  • Semprucci F, Balsamo M, Frontalini F (2014) The nematode assemblage of a coastal lagoon (Lake Varano, southern Italy): ecology and biodiversity patterns. Sci Mar 78:579–588

    Article  Google Scholar 

  • Semprucci F, Frontalini F, Sbrocca C, Armynot du Châtelet E, Bout-Roumazeilles V, Coccioni R, Balsamo M (2015) Meiobenthos and free-living nematodes as tools for the biomonitoring environments affected by riverine impact. Environ Monit Assess 187:1–19

    Article  Google Scholar 

  • Spagnoli F, Specchiulli A, Scirocco T, Carapella G, Villani P, Casolino G, Schiavione P, Franchi M (2002) The Lago di Varano: hydrologic characteristics and sediment composition. Mar Ecol 23:384–394

    Article  Google Scholar 

  • Specchiulli A, Focardi S, Renzi M, Scirocco T, Cilenti L, Breber P, Bastianoni S (2008) Environmental heterogeneity patterns and assessment of trophic levels in two Mediterranean lagoons: orbetello and Varano, Italy. Sci Total Environ 402:285–298

    Article  Google Scholar 

  • Specchiulli A, Renzi M, Scirocco T, Cilenti L, Florio M, Breber P, Focardi S, Bastianoni S (2010) Comparative study based on sediment characteristics and macrobenthic communities in two Italian lagoons. Environ Monit Assess 160:237–256

    Article  Google Scholar 

  • Tribovillard N, Algeo T, Lyons TW, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  • Wackernagel H (1989) Description of a computer program for analysing multivariate spatially distributed data. Comput Geosci 15:593–598

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Webster R, Oliver MA (1990) Statistical methods in soil and land resource survey. Oxford University Press, Oxford

    Google Scholar 

  • Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, Chichester

    Google Scholar 

  • Weindorf DC, Zhu Y (2010) Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: implications for sampling strategy. Pedosphere 20:185–197

    Article  Google Scholar 

  • Xl Li, Shi HM, Xia H-Y, Zhou Y-P, Qiu YW (2014) Seasonal hypoxia and its potential forming mechanisms in the Mirs Bay, the Northern South China Sea. Cont Shelf Res 80:1–7

    Article  Google Scholar 

Download references

Acknowledgments

We warmly thank Romain Abraham and Marion Delattre for technical analysis. The authors are grateful to the three anonymous reviewers as well as the co-editor in chief Prof. Olaf Kolditz for the thorough suggestions and revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Armynot du Châtelet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 28 kb)

Supplementary material 2 (XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armynot du Châtelet, E., Bout-Roumazeilles, V., Coccioni, R. et al. Environmental control on a land–sea transitional setting: integrated sedimentological, geochemical and faunal approaches. Environ Earth Sci 75, 123 (2016). https://doi.org/10.1007/s12665-015-4957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4957-7

Keywords

Navigation