Skip to main content

Advertisement

Log in

Assessment of hydrochemical evolution of groundwater and its suitability for drinking and irrigation purposes in Al-Khazir Gomal Basin, Northern Iraq

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study evaluates the groundwater suitability for drinking and agricultural purposes and assesses the hydrochemical evolution in Al-Khazir Gomal Basin, north of Iraq. Sixty groundwater samples and 10 river water samples were collected in the dry season (October) and wet season (April). The samples were analyzed to determine major and some minor ions, trace elements, and physicochemical properties. All surface and groundwater samples are considered as fresh water (TDS < 794 mg/L) and slightly vary in chemical composition. The abundance of the major ions is as follows: Ca2+ > Mg2+ > Na+ > K+ = HCO3  > SO4 2− > NO3  > Cl. Interpretation of analytical data showed predominance, the water type of Ca–HCO3 and Ca–Mg–HCO3 indicated young and renewable groundwater. Total dissolved solid, total hardness, major ions, and trace elements are all within permissible limits of the potable and domestic purposes according to the European and WHO standards. The parameters of irrigation suitability showed that all of the samples are fit for irrigation purpose. Moreover, cluster and factor analyses were applied to the large data set (70 samples and 25 variables) to unravel the hidden relationships between the parameters, and to reveal the main factors affecting the water quality. The samples collected from the same well during the wet and dry season were clustered together indicating that the seasonal variability is negligible. Factor analysis showed that the rainfall leaching processes (recharge), carbonate minerals dissolution, aluminosilicate weathering, and ionic exchange are the dominant factors involved in controlling the groundwater chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Basrawi NH (2006) Hydrogeological and hydrochemical study of Erbil Quadrangle (NJ–38–14), scale 1:250000. Int Rep No 3037, Baghdad

  • Al-Jiburi HK (2007) Hydrogeological and hydrochemical study of Mosul Quadrangle (NJ–38–13), scale 1:250000. Int Rep No 3058, Baghdad

  • Alloway B (2008) Zinc in soils and crop nutrition. ZA and IFA Brussels, Belgium and Paris

    Google Scholar 

  • Al-Sam S, Hanna F (1981) Evaluation of groundwater resources in Al-Khazir Gomal Basin. Int Rep No 1270, Iraq-Baghdad

  • Al-Sam S, Hanna F, Saeed R (1978) Estimating groundwater reserves of Alkhazir-Gomal Basin. Int Rep No 887, Baghdad

  • Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33(1):13–24. doi:10.1007/s002540050221

    Article  Google Scholar 

  • Ashley RP, Lloyd JW (1978) An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. J Hydrol 39(3–4):355–364. doi:10.1016/0022-1694(78)90011-2

    Article  Google Scholar 

  • Bahar MM, Reza MS (2010) Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of Southwest Bangladesh. Environ Earth Sci 61(5):1065–1073. doi:10.1007/s12665-009-0427-4

    Article  Google Scholar 

  • Balasubramanian N, Sivasubramanian P, Soundranayagam J, Chandrasekar N, Gowtham B (2015) Groundwater classification and its suitability in Kadaladi, Ramanathapuram, India using GIS techniques. Environ Earth Sci 57:1–23. doi:10.1007/s12665-015-4394-7

    Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: ain Azel plain (Algeria). Geoderma 159(3–4):390–398. doi:10.1016/j.geoderma.2010.08.016

    Article  Google Scholar 

  • Chen K, Jiao J, Huang J, Huang R (2007) Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environ Pollut 147(3):771–780. doi:10.1016/j.envpol.2006.09.002

    Article  Google Scholar 

  • Cicchella D, Albanese S, De Vivo B, Dinelli E, Giaccio L, Lima A, Valera P (2010) Trace elements and ions in Italian bottled mineral waters: identification of anomalous values and human health related effects. J Geochem Explor 107(3):336–349. doi:10.1016/j.gexplo.2010.04.004

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard M (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353(3–4):294–313. doi:10.1016/j.jhydrol.2008.02.015

    Article  Google Scholar 

  • de Moel PJ, Helm AW, Rijn M, Dijk JC, Meer WG (2013) Assessment of calculation methods for calcium carbonate saturation in drinking water for DIN 38404-10 compliance, Drink. Water Eng. Sci. 6(2):115–124. doi:10.5194/dwes-6-115-2013

    Article  Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and application to contamination. Lewis Publishers, U.S CRC, Boca Raton

    Google Scholar 

  • Dinelli E, Lima A, De Vivo B, Albanese S, Cicchella D, Valera P (2010) Hydrogeochemical analysis on Italian bottled mineral waters: effects of geology. J Geochem Explor 107(3):317–335. doi:10.1016/j.gexplo.2010.06.004

    Article  Google Scholar 

  • European Communities (1998) Quality of water intended for human consumption regulations. S. I. No 81 of 1988

  • Farnham I, Stetzenbach K, Singh A, Johannesson K (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Math Geol 32(8):943–968. doi:10.1023/A:1007522519268

    Article  Google Scholar 

  • Farnham I, Johannesson K, Singh A, Hodge V, Stetzenbach K (2003) Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal Chim Acta 490(1–2):123–138. doi:10.1016/S0003-2670(03)00350-7

    Article  Google Scholar 

  • Freeze R, Cherry J (1979) Groundwater. Prentice-Hall, New Jersey

    Google Scholar 

  • Gárfias J, Arroyo N, Aravena R (2010) Hydrochemistry and origins of mineralized waters in the Puebla aquifer system, Mexico. Environ Earth Sci 59(8):1789–1805. doi:10.1007/s12665-009-016-y

    Article  Google Scholar 

  • Güler C, Thyne G, McCray J, Turner K (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474. doi:10.1007/s10040-002-0196-6

    Article  Google Scholar 

  • Handa BK (1964) Modified classification procedure for rating irrigation waters. Soil Sci 68(4):264–269. doi:10.1097/00010694-196410000-00008

    Article  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez J (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816. doi:10.1016/S0043-1354(99)00225-0

    Article  Google Scholar 

  • Hem JD (1989) Study and interpritation of the chemical characteristics of natural water. In: United State Geological Survey Water-Supply Paper, 2254 3rd edn. Washington, DC: US Government Printing Office

  • Hudson HE, Gilcreas FW (1976) Health and economic aspects of water hardness and corrosiveness. J Am Water Works Assoc 68(4):201–204

    Google Scholar 

  • Jassas H, Merkel B (2014) Estimating groundwater recharge in the semiarid Al-Khazir Gomal Basin. North Iraq. Water 6(8):2467–2481. doi:10.3390/w6082467

    Google Scholar 

  • Jassas H, Merkel B (2015) Investigating groundwater recharge by means of stable isotopes in the Al-Khazir Gomal Basin, northern Iraq. Environ Earth Sci 84:1–14. doi:10.1007/s12665-015-4013-7

    Google Scholar 

  • Jeong CH (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol 253(1–4):194–210. doi:10.1016/S0022-1694(01)00481-4

    Article  Google Scholar 

  • Kaiser H (1958) The varimax criteria for analytical rotation in factor analysis. Psychometrika 23(3):187–200

    Article  Google Scholar 

  • Laaksoharju M, Skarman C, Skarman E (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Appl Geochem 14(7):861–871. doi:10.1016/S0883-2927(99)00024-4

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, California

    Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313(1–3):77–89. doi:10.1016/S0048-9697(02)00683-6

    Article  Google Scholar 

  • Maran A, Stevanovic Z (2008) Iraqi Kurdistan environment: an invitation to discover. ITSC-IK Cons, Belgrade

    Google Scholar 

  • Matalas NC, Reiher BJ (1967) Some comments on the use of factor analyses. Water Resour Res 3(1):213–223. doi:10.1029/WR003i001p00213

    Article  Google Scholar 

  • Monjerezi M, Vogt RD, Aagaard P, Saka V (2011) Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Appl Geochem 26(8):1399–1413. doi:10.1016/j.apgeochem.2011.05.013

    Article  Google Scholar 

  • Oyarzún R, Jofré E, Morales P, Maturana H, Oyarzún J, Kretschmer N, Aravena R (2015) A hydrogeochemistry and isotopic approach for the assessment of surface water–groundwater dynamics in an arid basin: the Limarí watershed, North-Central Chile. Environ Earth Sci 73(1):39–55. doi:10.1007/s12665-014-3393-4

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Report 99–4259, Denver, Colorado

  • Piper A (1944) A graphic procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25(25):914–923

    Article  Google Scholar 

  • Ragunath H (1987) Ground water, 2nd edn. Wiley Eastern Ltd, New Delhi

    Google Scholar 

  • Rao YS, Reddy TV, Nayudu PT (1997) Groundwater quality in the Niva River basin, Chittoor district, Andhra Pradesh, India. Environ Geol 32(1):56–63. doi:10.1007/s002540050193

    Article  Google Scholar 

  • Richards L (1954) Diagnosis and improvement of saline and alkali soils. Agricultural Handbook 60. USDA and IBH Publishing Co. Ltd, New Delhi

  • Sawyer G, McMcartly D (eds) (1967) Chemistry of sanitary engineers, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992. doi:10.1016/j.watres.2004.06.011

    Article  Google Scholar 

  • Singh A, Mondal GC, Singh TB, Singh S, Tewary BK, Sinha A (2012) Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environ Earth Sci 67(8):2175–2191. doi:10.1007/s12665-012-1658-3

    Article  Google Scholar 

  • Smil V (1999) Crop residues: agriculture’s largest harvest: crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience 49(4):299–308. doi:10.2307/1313613

    Article  Google Scholar 

  • Stevanovic Z, Iurkiewicz A (2009) Groundwater management in northern Iraq. Hydrogeol J 17(2):367–378

    Article  Google Scholar 

  • Subramani T, Elango L, Damodarasamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ Geol 47(8):1099–1110. doi:10.1007/s00254-005-1243-0

    Article  Google Scholar 

  • Thorne DW, Peterson HB (1954) Irrigated soils. Constable and Company, London

    Google Scholar 

  • Tijani MN (1994) Hydrogeochemical assessment of groundwater in Moro area, Kwara state, Nigeria. Environ Geol 24(3):194–202

    Article  Google Scholar 

  • Todd D (1980) Groundwater hydrology. Wiley International Edition, Wiley

    Google Scholar 

  • Touhari F, Meddi M, Mehaiguene M, Razack M (2015) Hydrogeochemical assessment of the Upper Cheliff groundwater (North West Algeria). Environ Earth Sci 73(7):3043–3061. doi:10.1007/s12665-014-3598-6

    Article  Google Scholar 

  • UNEP (1992) World Atlas of Desertification. London, UK

  • United Nations (2013) World population prospects: the 2012 revision. Highlights and Advance Tables

  • Vega M, Pardo R, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592. doi:10.1016/S0043-1354(98)00138-9

    Article  Google Scholar 

  • WHO (2006) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Williams RE (1982) Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Ground Water 20:466–478

    Article  Google Scholar 

  • Zacheus OM, Martikainen PJ (1997) Physicochemical quality of drinking and hot waters in Finnish buildings originated from groundwater or surface water plants. Sci Total Environ 204(1):1–10. doi:10.1016/S0048-9697(97)00160-5

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Academic Exchange Service (DAAD), the Geological Survey of Iraq (GEOSURV), and the Iraqi Ministry of Higher Education and Scientific Research. Also, the authors want to sincerely thank the staff of the laboratories of the Hydrogeology Department of TU Bergakademie Freiberg, Germany (Frau Schlothmann, Dr. Kummer, and Herr Peter) for assisting in conducting the hydrochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Jassas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jassas, H., Merkel, B. Assessment of hydrochemical evolution of groundwater and its suitability for drinking and irrigation purposes in Al-Khazir Gomal Basin, Northern Iraq. Environ Earth Sci 74, 6647–6663 (2015). https://doi.org/10.1007/s12665-015-4664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4664-4

Keywords

Navigation