Skip to main content

Advertisement

Log in

A hydrogeochemistry and isotopic approach for the assessment of surface water–groundwater dynamics in an arid basin: the Limarí watershed, North-Central Chile

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper describes the results of a hydrochemistry and isotopic study of surface water and groundwater dynamics at the Limarí River basin, arid North-Central Chile. The study involved two sampling campaigns, performed in April (Fall, at the end of the irrigation season) and December 2010 (late Spring, at the peak of the irrigation season). The main results show the effect of La Paloma and Hurtado dams on the chemical and isotopic compositions of the Grande and Hurtado rivers (main tributaries of the Limarí River), the influence of return flows to the Limarí River from surface water irrigation in agricultural areas, the local effects of metallurgical operations in the El Ingenio Creek, the effect of water–rock interaction processes, and the nearby coastal belt influence on the Punitaqui Creek area and the lower part of the Limarí River. In addition, this study shows an active interaction between surface water and shallow groundwater, and a minor importance of local precipitation events, on the hydrological behavior in the study area. An exception is the Rinconada de Punitaqui zone where the results are consistent with the origin of the water being associated with local precipitation. Also, sources of sulfate, which is present in high levels especially in surface waters, have been assessed. The results of this study, based on an integrated use of chemical and isotopic tracers, provide sound and useful information to establish the level of interaction between surface water and groundwater, allowing the development of a hydrological conceptual model for the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggarwal PK, Araguas L, Garner WA, Groeninig M, Kulkarni K (2007) Introduction to water sampling analysis for isotope hydrology. Water Resources Programme—IAEA. http://www-naweb.iaea.org/napc/ih/documents/other/Sampling%20booklet%20web.pdf. Accessed December 2009

  • Alvarez P, Oyarzún R (2006) Interacción río-acuífero en zonas áridas: contexto legal y análisis de casos (River−aquifer interaction: legal context and study cases). VIII Congreso Latino Americano de hidrología subterránea (ALSHUD), Asunción, Paraguay

  • Baskaran S, Ransley T, Brodie RS, Baker P (2009) Investigating groundwater–river interactions using environmental tracers. Aust J Earth Sci 56(1):13–19

    Article  Google Scholar 

  • Birke M, Rauch U, Harazim B, Lorenz H, Glatte W (2010) Major and trace elements in German bottled water, their regional distribution, and accordance with national and international standards. J Geochem Explor 107:245–271

    Article  Google Scholar 

  • Carreira PM, Marques JM, Espinha J, Chaminé HI, Fonseca PE, Monteiro F, Moura RM, Carvalho JM (2011) Defining the dynamics of groundwater in Serra da Estrela mountain area, Central Portugal: and isotopic and hydrogeochemical approach. Hydrogeol J 19:117–131

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York, p 328

    Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environmental Federation, Washington

    Google Scholar 

  • CONAMA (Comisión Nacional del Medio Ambiente) (2006) Estudio de la variabilidad climática en Chile para el siglo XXI (Study of the climate variability in Chile at the XXI century). Comisión Nacional del Medio Ambiente, Santiago

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus XVI 4:436–468

    Article  Google Scholar 

  • Demirel Z, Güller C (2006) Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey) Environ Geol 49:477–487

  • DGA (Dirección General de Aguas) (2004) Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad. Cuenca del Río Limarí (Diagnosis and classification of water bodies based on water quality objectives. Limarí river basin). Dirección General de Aguas, CADE IDEPE Consultores

  • DGA (Dirección General de Aguas) (2008) Evaluación de los recursos hídricos subterráneos en la cuenca del rio Limarí (Groundwater resources assessment in the Limarí river basin). Informe Técnico Nº 268, Dirección General de Aguas

  • Drever JI (1997) The geochemistry of natural waters. Surface and groundwater environments, 3rd edn. Prentice Hall, New Jersey, p 436

  • El Bakri A, Tantawi A, Blavoux B, and Dray M (1992) Sources of water recharge identified by isotopes in the ElMynya Governate (Nile Valley, Middle Egypt). In: Isotope techniques in water resources development 1991, IAEA symposium 319, Vienna, pp 643–645

  • Emparán C, Pineda G (2006) Geología del Area Andacollo-Puerto Aldea, Región de Coquimbo (Geology of the Andacollo-Puerto Aldea are, Coquimbo Region). Servicio Nacional de Geología y Minería, Carta Geológica Nº 96, Santiago. Carta 1:100,000

  • Espejo L, Kretschmer N, Oyarzún J, Meza F, Núñez J, Maturana H, Soto G, Oyarzo P, Garrido M, Suckel F, Amézaga J, Oyarzún R (2011) Application of water quality indices and analysis of the surface water quality monitoring network in semiarid North-Central Chile. Environ Monit Assess 184(9):5571–5588

    Article  Google Scholar 

  • Espinoza MC (2005) Vulnerabilidad de los acuíferos en los ríos Limarí y Maule mediante las metodologías GOD y BGR (Aquifer vulnerability in the Limarí and Maule river basins base don the GOD and BGR methodologies). Memoria de Título, Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile

  • Fernández E, Grilli A, Aravena R, Alvarez D (2013) Determinación de la presencia de nitrógeno de diversas fuentes en aguas subterráneas en un acuífero agrícola (Assessment on the presence of nitrate from several sources in groundwater of a rural aquifer). XX Congreso de Ingenieria Sanitaria y Ambiental, Aidis-Chile

    Google Scholar 

  • Freeze AL, Cherry JA (1979) Groundwater. Prentice Hall, New Jersey, p 604

    Google Scholar 

  • Friedman I, Smith GI, Gleason JD, Warden A, Harris JM (1992) Stable isotope composition of waters inSoutheastern California. 1. Modern Precipitation. J Geophys Res 97:5795–5812

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Lovat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Graedel TE, Keene WC (1996) The budget and cycle of Earth’s natural chlorine. Pure Appl Chem 68:1689–1697

    Article  Google Scholar 

  • Guay BE, Eastoe CJ, Basset R, Long A (2006) Identifying sources of groundwater in the lower Colorado River valley, USA, with δ18O, δD, and 3H: implications for river water accounting. Hydrogeol J 14:146–158

    Article  Google Scholar 

  • Güller C, Thyne G, McGray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474

    Article  Google Scholar 

  • Herczeg AL, Leaney FW (2011) Review: environmental tracers in arid-zone hydrology. Hydrogeol J 19:17–29

    Article  Google Scholar 

  • Hoke GD, Aranibar JN, Viale M, Araneo DC, Llano C (2013) Seasonal moisture sources and the isotopic composition of precipitation, rivers and carbonates across the Andes at 32.5–35.5°S. Geochem Geophy Geosy 14:962–978

    Google Scholar 

  • INE (Instituto Nacional de Estadísticas) (2007) VII Censo nacional agropecuario y forestal (VII Agricultural and forestry census). Instituto Nacional de Estadísticas. http://www.censoagropecuario.cl/noticias/08/6/10062008.html. Accessed 12 May 12 2010

  • Ingraham NL, Matthews RA (1988) Fog drip as a source of groundwater recharge in northern Kenya. Water Resour Res 24:1406–1410

    Article  Google Scholar 

  • López-Escobar L, Frey FA, Oyarzún J (1979) Geochemical characteristics of central Chile (33º–34ºS) granitoids. Contrib Mineral Petrol 70:439–450

    Article  Google Scholar 

  • Maliva R, Missimer T (2012) Arid lands, water evaluation and management. Springer, Berlin. doi:10.1007/978-3-642-29104-3_2

  • Matter JM, Waber NH, Loew S, Matter A (2005) Recharge areas and geochemical evolution of groundwater in an alluvial aquifer system in the Sultanate of Oman. Hydrogeol J 14:203–224

    Article  Google Scholar 

  • Mook WG (2001) Environmental isotopes in the hydrological cycle. Principles and applications IHP-V. Technical documents in Hydrology, No 39. UNESCO-IAEA

  • Morrison J (1997) Inorganic oxygen isotope analysis by EA-Pyrolysis-IRMS. IV Canadian Continuous Flow, IRMS Conference

  • Morrison J, Fallick T, Donelly T, Leossen M, St. Jean G, Drimmie R J (1996) δ34S Measurements of standards from several laboratories by continuous flow isotope ratio mass spectrometry (CF-IRMS). Micromass UK Ltd. Technical Note TN 309

  • Oyarzún J, Levi B, Nystrom JO (1993) A within-plate geochemical signature and continental margin setting for the Mesozoic-Cenozoic lavas of central Chile. Second ISAG, Oxford (UK), pp 419–422. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/colloques2/38461.pdf. Accessed 28 February 2013

  • Oyarzún R, Arumí JL, Alvarez P, Rivera D (2008) Water use in the Chilean agriculture: current situation and areas for research development. In: Sorensen ML (ed) Agricultural water management trends. Nova Publishers, New York, pp 213–236

    Google Scholar 

  • Pu J, Yuan D, Zhang C, Zhao H (2013) Hydrogeochemistry and possible sulfate sources in karst groundwater in Chongquing, China. Environ Earth Sci 68(1):159–168

    Article  Google Scholar 

  • Rozanski K, Araguas-Aragua L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. In: Geophysical monograph, vol 78. American Geophysical Union, Washington, pp 1–36

    Chapter  Google Scholar 

  • SERPLAC, DGA, ONU, CORFO (1979) Hidrogeología de la cuenca del río Limarí. Investigación de recursos hidráulicos en la IV región (Limarí basin hydrogeology. Research on hydraulic resources in the Region IV). Proyecto CHI-535

  • Shi JA, Wang Q, Chen GJ, Wang GY, Zhang ZN (2001) Isotopic geochemistry of the groundwater systems in arid and semiarid areas and its significance: a case study in Shiyang River basin, Gansu province, northwest China. Environ Geol 40:557–565

    Article  Google Scholar 

  • Simmers I (2003) Hydrological processes and water resources management. In: Simmers I (ed) Understanding water in a dry environment. Hydrological processes in arid and semi-arid zones. International Association of Hydrogeologists. A. A. Balkema, Rotterdam, pp 1–14

    Google Scholar 

  • Souvignet M, Gaesse H, Ribbe L, Kretschmer N, Oyarzún R (2010) Statistical downscaling of precipitation and temperature in North-Central Chile: an assessment of possible climate change impacts in an arid Andean watershed. Hydrolog Sci J 55(1):41–57

    Article  Google Scholar 

  • Squeo FA, Aravena R, Aguirre E, Pollastri A, Jorquera CB, Ehleringer JR (2006) Groundwater dynamics in a coastal aquifer in North-central Chile: implications for groundwater recharge in an arid ecosystem. J Arid Environ 67:240–254

    Article  Google Scholar 

  • Strauch G, Oyarzún J, Fiebig-Wittmaack M, González E, Weise S (2006) Contributions of the different water sources to the Elqui river runoff (northern Chile) evaluated by H/O isotopes. Isot Environ Health S 42(3):303–322

    Article  Google Scholar 

  • Strauch G, Oyarzún R, Reinstorf F, Oyarzún J, Schirmer M, Knöller K (2009) Interactions of water components in the semi-arid Huasco and Limarí river basins, North Central Chile. Adv Geosci 22:51–57

    Article  Google Scholar 

  • Tanaskovic I, Golobocanin D, Miljevic N (2012) Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J Geochem Explor 112:226–234

    Article  Google Scholar 

  • Thomas H (1967) Geología de la Hoja Ovalle, Provincia de Coquimbo (Geology of the Ovalle Sheet, Coquimbo Region). Instituto de Investigaciones Geológicas, Boletín Nº 23. Santiago, 58 pp and geologic map 1:250,000

  • Thyne G, Güller C, Poeter E (2004) Sequential analysis of hydrochemical data for watershed characterization. Ground Water 42:711–723

    Article  Google Scholar 

  • Xiao J, Jin Z, Zhang F, Wang J (2012) Major ion geochemistry of shallow groundwater in the Quinghai lake catchment. NE Quinghai-Tibet Plateau. Environ Earth Sci 67(5):1331–1344

    Article  Google Scholar 

  • Yang L, Song X, Zhang Y, Yuan R, Ma Y, Han D, Bu H (2012) A hydrochemical framework and water quality assessment of river water in the upper reaches of the Huai River Basin. China. Environ Earth Sci 67(7):2141–2153

    Article  Google Scholar 

  • Yin L, Hou G, Su X, Wang D, Dong J, Hao Y, Wang X (2011) Isotopes (δD and δD18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19:429–443

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the International Atomic Energy Agency (AIEA) through the Technical Cooperation Project CHI 8029, and DIULS CD093401 (Research Office of the University of La Serena), and was conducted as part of the Water Resources and Environment Program (PRHIMA) of the Department of Mining Engineering of the University of La Serena. The authors are much indebted to the Dirección General de Aguas (DGA, Ministerio de Obras Públicas) and to Carabineros de Chile for allowing the installation of rainfall collectors within their facilities, as well as to the APR’s committees for allowing sampling of their wells. The paper benefited from the comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Oyarzún.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyarzún, R., Jofré, E., Morales, P. et al. A hydrogeochemistry and isotopic approach for the assessment of surface water–groundwater dynamics in an arid basin: the Limarí watershed, North-Central Chile. Environ Earth Sci 73, 39–55 (2015). https://doi.org/10.1007/s12665-014-3393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3393-4

Keywords

Navigation