Skip to main content
Log in

Progressive failure constitutive model for softening behavior of rocks based on maximum entropy theory

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Considering that rock failure is a gradual process when subjected to triaxial stress conditions, a new statistical damage constitutive model is proposed to describe the progressive failure of rocks. The model is based on continuous damage mechanics and maximum entropy theory while the commonly used statistical damage model is based on continuous damage mechanics and the conventional Weibull distribution, which is used to describe the strength of mesoscopic rock elements. Weibull distribution is a distribution function with a specific assumption that the nth central moment and the geometric mean of the statistical variable are constant. The maximum entropy distribution is the only unbiased distribution and the Weibull distribution is a special case of the maximum entropy distribution. According to the maximum entropy theory, the damage variable is defined without any prior assumptions of the theoretical distributions. The rock is hypothesized to be divided into two parts: the damaged portion and undamaged portion. The bearing capacity of the damaged part is also considered in the new model so that it is more in accordance with the actual situation. The mesoscopic rock elemental strength is calculated based on energy release rate principles to avoid the deficiencies in using the conventional stress or strain criteria approaches, and the effect of rock initial fissures is emphasized. A new method is presented to determine the unknown parameters in the constitutive equations. The applicability of the new statistical damage constitutive model is verified by experimental data. It is shown that the theoretical model is in good agreement with the test data trend and can simulate the softening behavior of rock well. Admittedly, the proposed model proposed in this paper is a basic model without considering some important aspects of rock deformation mechanics, such as the absences of the complex stress conditions. The purpose of this paper was to illustrate that the constitutive model can be established in the framework of continuous damage mechanics and maximum entropy theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

Total area of the representative surface

A u :

Undamaged area of the representative surface

A d :

Damaged area of the representative surface

C :

Positive constant

c :

Cohesion of rock

D :

Damage variable

F :

Resultant acting on A

E :

Modulus of intact rock

E u :

Modulus of undamaged rock

E i :

Unloading modulus

F u :

Resultant acting on A u

F d :

Resultant acting on A d

F(x):

Distribution function of rock elements strength

f(x):

Probability density function

f p (x):

Most likely distribution function for x

G(X):

Lagrange function

G c :

Critical value of energy release rate

G i :

Energy release rate in i direction

G max :

Maximum energy release rate

H(X):

Information entropy

H(X)max :

Maximum of information entropy

i, j :

Subscript symbols (i, j = 1, 2, 3)

K :

Elemental strength parameter

K i :

Material constant

k :

Order of moment function

m :

Total number of discrete statistical variables

m k :

Calculated value from available data

N :

Total number of rock elements

N d :

Number of failed rock elements

n :

Number of discrete statistical variables

n j :

Normal to the representative surface

P n :

Probability of discrete statistical variables

P np :

Most likely probability for x n

R :

Sliding interval of x

U d :

Dissipated energy

U e :

Releasable energy

\(u_{k} \left( x \right){\text{ or}}\;u_{\alpha } \left( x \right)\) :

Moment function

X :

Statistical variable

x :

Value of continuous statistical variable

x n :

Value of discrete statistical variable

α :

Number of Lagrange parameters

β :

Serial number of experimental data

γ :

Numbers of data points

\(\varepsilon_{i} , \, \varepsilon_{i}^{\text{u}} ,\;{\text{and}}\;\varepsilon_{i}^{\text{d}}\) :

Principal apparent strain, latent strain of damaged part and undamaged part

λ α :

Lagrange parameters

\(\sigma_{c}\) :

Uniaxial compressive strength

\(\sigma_{ij} , \, \sigma_{ij}^{\text{u}} ,\;{\text{and }}\sigma_{ij}^{\text{d}}\) :

Stress tensor acting on A, A u, and A d, respectively

σ 1, σ 2, and σ 3 :

Principal stresses acting on A

\(\sigma_{1}^{\text{u}} , \, \sigma_{2}^{\text{u}} ,{\text{ and}}\;\sigma_{3}^{\text{u}}\) :

Principal stresses acting on A u

\(\sigma_{1}^{\text{d}} , \, \sigma_{2}^{\text{d}} ,{\text{ and }}\sigma_{3}^{\text{d}}\) :

Principal stresses acting on A d

υ :

Poisson’s ratio

φ :

Internal friction angle

\(\phi\) :

Value of a specific angle

References

  • Basu B, Tiwari D, Kundu Debasis, Prasad R (2009) Is Weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceram Int 35(1):237–246

    Article  Google Scholar 

  • Bažant ZP, Salviato M, Chau VT, Viswanathan H, Zubelewicz A (2014) Why fracking works. J Appl Mech 81(10):101010

    Article  Google Scholar 

  • Bieniawski ZT (1967) Mechanism of brittle fracture of rock: part II—experimental studies. Int J Rock Mech Min Sci Geomech Abstr 4(4):407–423

    Article  Google Scholar 

  • Brady BT (1969a) The nonlinear mechanical behavior of brittle rock Part I—Stress-strain behavior during regions I and II. Int J Rock Mech Min Sci Geomech Abstr 6(2):211–225

    Article  Google Scholar 

  • Brady BT (1969b) The nonlinear mechanical behavior of brittle rock Part II—Stress-strain behavior during regions III and IV. Int J Rock Mech Min Sci Geomech Abstr 6(3):301–310

    Article  Google Scholar 

  • Cao WG, Zhang S (2005) Study on random statistical method of damage for softening hardening constitutive model of rock [C]. In: Paper presented at the Proceedings of the 2nd China–Japan Geotechnical Symposium, Shanghai, China

  • Cao WG, Zhao H, Li XA, Zhang YJ (2010) Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes. Can Geotech J 47(8):857–871

    Article  Google Scholar 

  • Çelik MY, Akbulut H, Ergül A (2014) Water absorption process effect on strength of Ayazini tuff, such as the uniaxial compressive strength (UCS), flexural strength and freeze and thaw effect. Environ Earth Sci 71(9):4247–4259

    Article  Google Scholar 

  • Chaboche JL (1987) Continuum damage mechanics: present state and future trends. Nucl Eng Des 105(1):19–33

    Article  Google Scholar 

  • Cook NGW (1965) The failure of rock. Int J Rock Mech Min Sci Geomech Abstr 2(4):389–403

    Article  Google Scholar 

  • Danzer R (2006) Some notes on the correlation between fracture and defect statistics: are Weibull statistics valid for very small specimens? J Eur Ceram Soc 26(15):3043–3049

    Article  Google Scholar 

  • Danzer R, Supancic P, Pascual J, Lube T (2007) Fracture statistics of ceramics—Weibull statistics and deviations from Weibull statistics. Eng Fract Mech 74(18):2919–2932

    Article  Google Scholar 

  • Deng J, Gu D (2011) On a statistical damage constitutive model for rock materials. Comput Geosci 37(2):122–128

    Article  Google Scholar 

  • Deng J, Li XB, Gu GS (2004) A distribution-free method using maximum entropy and moments for estimating probability curves of rock variables. Int J Rock Mech Min Sci 41(3):127–132

    Article  Google Scholar 

  • Desai CS, Faruque MO (1984) Constitutive model for geological materials. J Eng Mech 110(9):1391–1408

    Article  Google Scholar 

  • Eshiet KI, Sheng Y (2014) Carbon dioxide injection and associated hydraulic fracturing of reservoir formations. Environ Earth Sci 72(4):1011–1024

    Article  Google Scholar 

  • Eshiet KI, Sheng Y, Ye JQ (2013) Microscopic modelling of the hydraulic fracturing process. Environ Earth Sci 68(4):1169–1186

    Article  Google Scholar 

  • Fanella D, Krajcinovic D (1988) A micromechanical model for concrete in compression. Eng Fract Mech 29(1):49–66

    Article  Google Scholar 

  • Fang Z, Harrison JP (2001) A mechanical degradation index for rock. Int J Rock Mech Min Sci 38(8):1193–1199

    Article  Google Scholar 

  • Fang Z, Harrison JP (2002a) Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions. Int J Rock Mech Min Sci 39(4):459–476

    Article  Google Scholar 

  • Fang Z, Harrison JP (2002b) Development of a local degradation approach to the modelling of brittle fracture in heterogeneous rocks. Int J Rock Mech Min Sci 39(4):443–457

    Article  Google Scholar 

  • Frantziskonis G, Desai CS (1987) Constitutive model with strain softening. Int J Solids Struct 23(6):733–750

    Article  Google Scholar 

  • Hayakawa K, Murakami S (1997) Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int J Damage Mech 6(4):333–363

    Article  Google Scholar 

  • Hua AZ (2003) Energy analysis of surrounding rocks in underground rocks. Chin J Rock Mech Eng 22(7):1054–1059

    Google Scholar 

  • Jaynes ET (1957a) Information theory and statistical mechanics. Phys Rev 106(4):620

    Article  Google Scholar 

  • Jaynes ET (1957b) Information theory and statistical mechanics II. Phys Rev 108(2):171

    Article  Google Scholar 

  • Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25(7):803–833

    Article  Google Scholar 

  • Ju JW, Lee X (1991) Micromechanical damage models for brittle solids. Part I: tensile loadings. J Eng Mech 117(7):1495–1514

    Article  Google Scholar 

  • Kaiser PK, Guenot A, Morgenstern NR (1985) Deformation of small tunnels—IV. Behaviour during failure. Int J Rock Mech Min Sci Geomech Abstr 22(3):141–152

    Article  Google Scholar 

  • Khan AS, Xiang Y, Huang S (1991) Behavior of Berea sandstone under confining pressure part I: yield and failure surfaces, and nonlinear elastic response. Int J Plast 7(6):607–624

    Article  Google Scholar 

  • Krajcinovic D, Rinaldi A (2005) Thermodynamics and statistical physics of damage processes in quasi-ductile solids. Mech Mater 37(2–3):299–315

    Article  Google Scholar 

  • Krajcinovic D, Fonseka GU (1981) The continuous damage theory of brittle materials, part 1: general theory. J Appl Mech 48(4):809–815

    Article  Google Scholar 

  • Krajcinovic D, Silva MAG (1982) Statistical aspects of the continuous damage theory. Int J Solids Struct 18(7):551–562

    Article  Google Scholar 

  • Lee X, Ju JW (1991) Micromechanical damage models for brittle solids. Part II: compressive loadings. J Eng Mech 117(7):1515–1536

    Article  Google Scholar 

  • Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107(1):83–89

    Article  Google Scholar 

  • Li X, Cao WG, Su YH (2012) A statistical damage constitutive model for softening behavior of rocks. Eng Geol 143:1–17

    Article  Google Scholar 

  • Lubarda VA, Krajcinovic D (1995) Constitutive structure of rate theory of damage in brittle elastic solids. Appl Math Comput 67(1):81–101

    Article  Google Scholar 

  • Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659

    Article  Google Scholar 

  • Menendez B, David C (2013) The influence of environmental conditions on weathering of porous rocks by gypsum: a non-destructive study using acoustic emissions. Environ Earth Sci 68(6):1691–1706

    Article  Google Scholar 

  • Murakami S, Kamiya K (1997) Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int J Mech Sci 39(4):473–486

    Article  Google Scholar 

  • Peng SS (1978) Coal mine ground control. Wiley, New York

    Google Scholar 

  • Pensée V, Kondo D, Dormieux L (2002) Micromechanical analysis of anisotropic damage in brittle materials. J Eng Mech 128(8):889–897

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Prat PC, Bažant ZP (1997) Tangential stiffness of elastic materials with systems of growing or closing cracks. J Mech Phys Solids 45(4):611–636

    Article  Google Scholar 

  • Rummel F, Fairhurst C (1970) Determination of the post-failure behavior of brittle rock using a servo-controlled testing machine. Rock Mech 2(4):189–204

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27(379–423):623–656

    Article  Google Scholar 

  • Shao JF, Rudnicki JW (2000) A microcrack-based continuous damage model for brittle geomaterials. Mech Mater 32(10):607–619

    Article  Google Scholar 

  • Shao JF, Hoxha D, Bart M, Homand F, Duveau G, Souley M, Hoteit N (1999) Modelling of induced anisotropic damage in granites. Int J Rock Mech Min Sci 36(8):1001–1012

    Article  Google Scholar 

  • Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43(4):582–592

    Article  Google Scholar 

  • Siddall JN (1983) Probabilistic engineering design. CRC Press

  • Siegesmund S, Popp T, Kaufhold A, Dohrmann R, Gräsle W, Hinkes R, Schulte-Kortnack D (2014) Seismic and mechanical properties of Opalinus Clay: comparison between sandy and shaly facies from Mont Terri (Switzerland). Environ Earth Sci 71(8):3737–3749

    Article  Google Scholar 

  • Sun Q, Zhu S (2014) Wave velocity and stress/strain in rock brittle failure. Environ Earth Sci 72(3):861–866

    Article  Google Scholar 

  • Tang CA (1993) Catastrophe in rock unstable failure. China coal industry publishing house, Beijing

    Google Scholar 

  • Tang CA (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34(2):249

    Article  Google Scholar 

  • Tang CA, Kaiser PK (1998) Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—Part I: fundamentals. Int J Rock Mech Min Sci 35(2):113–121

    Article  Google Scholar 

  • Tang CA, Liu H, Lee PKK, Tsui Yi, Tham LG (2000) Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity. Int J Rock Mech Min Sci 37(4):555–569

    Article  Google Scholar 

  • Tiwari RP, Rao KS (2006) Post failure behaviour of a rock mass under the influence of triaxial and true triaxial confinement. Eng Geol 84(3):112–129

    Article  Google Scholar 

  • Todinov MT (2009) Is Weibull distribution the correct model for predicting probability of failure initiated by non-interacting flaws? Int J Solids Struct 46(3–4):887–901

    Article  Google Scholar 

  • Tvergaard V, Nielsen KL (2010) Relations between a micro-mechanical model and a damage model for ductile failure in shear. J Mech Phys Solids 58(9):1243–1252

    Article  Google Scholar 

  • Wang Z, Li Y, Wang JG (2007) A damage-softening statistical constitutive model considering rock residual strength. Comput Geosci 33(1):1–9

    Article  Google Scholar 

  • Wawersik WR, Brace WF (1971) Post-failure behavior of a granite and diabase. Rock Mech 3(2):61–85

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Xie HP (1993) Fractals in rock mechanics, vol 1. CRC Press

  • Xie HP, Peng RD (2009) Energy analysis and criteria for structural failure of rocks. J Rock Mech Geotech Eng 1(1):11–20

    Google Scholar 

  • Xie H, Gao F (2000) The mechanics of cracks and a statistical strength theory for rocks. Int J Rock Mech Min Sci 37(3):477–488

    Article  Google Scholar 

  • Xie HP, Peng RD, Ju Y, Zhou HW (2005) On energy analysis of rock failure. Chin J Rock Mech Eng 24(15):2603–2608

    Google Scholar 

  • Xu H, Arson C (2014) Anisotropic damage models for geomaterials: theoretical and numerical challenges. Int J Comput Methods 11(2). doi:10.1142/S0219876213420073

  • Xu T, Xu Q, Deng M, Ma T, Yang T, Tang C (2014) A numerical analysis of rock creep-induced slide: a case study from Jiweishan Mountain China. Environ Earth Sci 72(6):2111–2128

    Article  Google Scholar 

  • Zhang C, Feng X-T, Zhou H, Qiu S, Yang Y (2014) Rock mass damage induced by rockbursts occurring on tunnel floors: a case study of two tunnels at the Jinping II Hydropower Station. Environ Earth Sci 71(1):441–450

    Article  Google Scholar 

  • Zhong Z, Liu X, Liu Y (2013) Research on elastoplastic damage constitutive model of intact Q2l loess in northwestern of China. Environ Earth Sci 69(1):85–92

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major State Basic Research Project (2011CB201201), Provincial Science and Technology Support Project (2012FZ0124), and the International Science and Technology Cooperation Program of China (2012DFA60760).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Z. Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C.B., Xie, L.Z., Ren, L. et al. Progressive failure constitutive model for softening behavior of rocks based on maximum entropy theory. Environ Earth Sci 73, 5905–5915 (2015). https://doi.org/10.1007/s12665-015-4228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4228-7

Keywords

Navigation