Skip to main content

Advertisement

Log in

CO2 storage resource estimates in unconventional reservoirs: insights from a pilot-sized storage site in Svalbard, Arctic Norway

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Storage capacity is a key aspect when validating potential CO2 sequestration sites. Most CO2 storage projects, for obvious reasons, target conventional aquifers (e.g., saline aquifers, depleted hydrocarbon fields) with good reservoir properties and ample subsurface data. However, non-geological factors, such as proximity to the CO2 source, may require storing CO2 in geologically “less-than-ideal” sites. We here present a first-order CO2 storage resource estimate of such an unconventional storage unit, a naturally fractured, compartmentalized and underpressured siliciclastic aquifer located at 670–1,000 m below Longyearbyen, Arctic Norway. Water injection tests confirm the injectivity of the reservoir. Capacity calculations, based on the US DOE guidelines for CO2 storage resource estimation, were implemented in a stochastic volumetric workflow. All available data were used to specify input parameters and their probability distributions. The areal extent of the compartmentalized reservoir is poorly constrained, encouraging a scenario-based approach. Other high-impact parameters influencing storage resource estimates include CO2 saturation, CO2 density and the storage efficiency factor. The hydrodynamic effects of storing CO2 in a compartmentalized aquifer are accounted for by calculating probable storage efficiency factors (0.04–0.79 %) in a fully closed system. The results are ultimately linked to the chosen scenario, with two orders of magnitude difference between scenarios. The fracture network contributes with up to 2 % to the final volumes. The derived workflow validates CO2 storage sites based on initial feasibility assessments, and may be applied to aid decision making at other unconventional CO2 storage sites with significant data uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambrose W, Lakshminarasimhan S, Holtz M, Núñez-López V, Hovorka S, Duncan I (2008) Geologic factors controlling CO2 storage capacity and permanence: case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage. Environ Geol 54:1619–1633. doi:10.1007/s00254-007-0940-2

    Article  Google Scholar 

  • Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust 34:254–273. doi:10.1016/j.pecs.2007.10.001

    Article  Google Scholar 

  • Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Control 1:430–443. doi:10.1016/s1750-5836(07)00086-2

    Article  Google Scholar 

  • Bælum K, Braathen A (2012) Along-strike changes in fault array and rift basin geometry of the Carboniferous Billefjorden Trough, Svalbard, Norway. Tectonophysics 546–547:38–55. doi:10.1016/j.tecto.2012.04.009

    Article  Google Scholar 

  • Bælum K, Johansen TA, Johnsen H, Rød K, Ruud BO, Braathen A (2012) Subsurface geometries of the Longyearbyen CO2 lab in Central Spitsbergen, as mapped by reflection seismic data. Nor J Geol 92:377–389

    Google Scholar 

  • Bickle M, Chadwick A, Huppert HE, Hallworth M, Lyle S (2007) Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet Sci Lett 255:164–176. doi:10.1016/j.epsl.2006.12.013

    Article  Google Scholar 

  • Birkholzer JT, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenh Gas Control 3:745–756. doi:10.1016/j.ijggc.2009.07.002

    Article  Google Scholar 

  • Braathen A, Bergh S, Karlsen F, Maher H, Andresen A, Hansen A-I, Bergvik A (1999) Kinematics of the Isfjorden-Ymerbukta Fault zone: a dextral oblique-thrust ramp in the Tertiary fold-thrust belt of Spitsbergen. Nor Geol Tidsskr 79:227–240

    Article  Google Scholar 

  • Braathen A, Bælum K, Christiansen HH, Dahl T, Eiken O, Elvebakk H, Hansen F, Hanssen TH, Jochmann M, Johansen TA, Johnsen H, Larsen L, Lie T, Mertes J, Mørk A, Mørk MB, Nemec WJ, Olaussen S, Oye V, Rød K, Titlestad GO, Tveranger J, Vagle K (2012) Longyearbyen CO2 lab of Svalbard, Norway—first assessment of the sedimentary succession for CO2 storage. Nor J Geol 92:353–376

    Google Scholar 

  • Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Control 1:62–68. doi:10.1016/s1750-5836(07)00027-8

    Article  Google Scholar 

  • Brown C, Poiencot B, Hudyma N, Albright B, Esposito R (2014) An assessment of geologic sequestration potential in the panhandle of Florida USA. Environ Earth Sci 71:793–806. doi:10.1007/s12665-013-2481-1

    Article  Google Scholar 

  • Chadwick A, Arts R, Bernstone C, May F, Thibeau S, Zweigel P (2008) Best practice for the storage of CO2 in saline aquifers: Observations and guidelines from the SACS and CO2STORE projects. British Geological Survey, Nottingham

    Google Scholar 

  • Cloete M (2010) Atlas on geological storage of carbon dioxide in South Africa. Council for Geoscience, Pretoria

    Google Scholar 

  • Dallmann WK, Dypvik H, Gjelberg JG, Harland WB, Johannessen EP, Keilen HB, Larssen GB, Lønøy A, Midbøe PS, Mørk A, Nagy J, Nilsson I, Nøttvedt A, Olaussen S, Pcelina TM, Steel RJ, Worsley D (1999) Lithostratigraphic Lexicon of Svalbard: Review and recommendations for nomenclature use. Norsk Polarinstitutt, Tromsø

    Google Scholar 

  • Dershowitz WS, Herda HH (1992) Interpretation of fracture spacing and intensity. In: Tillerson Wawersik (ed) Rock Mechanics. Balkerna, Rotterdam, pp 757–766

    Google Scholar 

  • Doughty C, Freifeld B, Trautz R (2008) Site characterization for CO2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environ Geol 54:1635–1656. doi:10.1007/s00254-007-0942-0

    Article  Google Scholar 

  • Edlmann K, Haszeldine S, McDermott CI (2013) Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow. Environ Earth Sci 70:3393–3409. doi:10.1007/s12665-013-2407-y

    Article  Google Scholar 

  • Ehrenberg SN (2004) Factors controlling porosity in upper carboniferous-lower permian carbonate strata of the Barents sea. AAPG Bull 12:1653–1676

    Article  Google Scholar 

  • Ehrenberg SN, Nielsen EB, Svånå TA, Stemmerik L (1998) Diagenesis and reservoir quality of the Finnmark carbonate platforrn, Barents Sea: results from Wells 7128/6-1 and 7128/4-1. Nor Geol Tidsskr 78:225–252

    Google Scholar 

  • Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, Høier L (2011) Lessons learned from 14 years of CCS operations: sleipner, In Salah and Snøhvit. Energy Proc 4:5541–5548. doi:10.1016/j.egypro.2011.02.541

    Article  Google Scholar 

  • Elvebakk H (2010) Results of borehole logging in well LYB CO2, Dh4 of 2009, Longyearbyen, Svalbard. vol 2010.018. NGU, Trondheim, Norway

  • Farokhpoor R, Torsæter O, Baghbanbashi T, Mørk A, Lindeberg EGB (2010) Experimental and numerical simulation of CO2 injection into upper-triassic sandstones in Svalbard, Norway. SPE Int SPE 139524:11. doi:10.2118/139524-MS

    Google Scholar 

  • Farokhpoor R, Lindeberg EGB, Torsæter O, Mørk MB, Mørk A (2014) Permeability and relative permeability measurements for CO2-brine system at reservoir conditions in low permeable sandstones in Svalbard. Greenh Gases Sci Technol 4:36–52. doi:10.1002/ghg.1375

    Article  Google Scholar 

  • Fischer S, Liebscher A, De Lucia M, Hecht L (2013) Reactivity of sandstone and siltstone samples from the Ketzin pilot CO2 storage site-Laboratory experiments and reactive geochemical modeling. Environ Earth Sci 70:3687–3708. doi:10.1007/s12665-013-2669-4

    Article  Google Scholar 

  • Frykman P (2012) Permeability anisotropy at cm-scale in sandstones from De Geerdalen Fm., Deltaneset, Svalbard. GEUS, unpublished report, Copenhagen, Denmark

  • GeoCapacity (2008) EU GeoCapacity: Assessing European Capacity for Geological Storage of Carbon Dioxide. GEUS Project no. SES6-518318, Copenhagen, Denmark

  • Goodman A, Hakala A, Bromhal G, Deel D, Rodosta T, Frailey S, Small M, Allen D, Romanov V, Fazio J, Huerta N, McIntyre D, Kutchko B, Guthrie G (2011) U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int J Greenh Gas Control 5:952–965. doi:10.1016/j.ijggc.2011.03.010

    Article  Google Scholar 

  • Goodman A, Bromhal G, Strazisar B, Rodosta T, Guthrie WF, Allen D, Guthrie G (2013) Comparison of methods for geologic storage of carbon dioxide in saline formations. Int J Greenh Gas Control 18:329–342. doi:10.1016/j.ijggc.2013.07.016

    Article  Google Scholar 

  • Goos E, Riedel U, Zhao L, Blum L (2011) Phase diagrams of CO2 and CO2–N2 gas mixtures and their application in compression processes. Energy Proc 4:3778–3785. doi:10.1016/j.egypro.2011.02.312

    Article  Google Scholar 

  • Halland EK, Gjeldvik IT, Johansen WT, Magnus C, Meling IM, Pedersen S, Riis F, Solbakk T, Tappel I (2011) CO2 storage atlas: Norwegian North Sea. Nor Pet Dir, Stavanger

    Google Scholar 

  • Hamelinck CN, Faaij APC, Turkenburg WC, van Bergen F, Pagnier HJM, Barzandji OHM, Wolf KHAA, Ruijg GJ (2002) CO2 enhanced coalbed methane production in the Netherlands. Energy 27:647–674. doi:10.1016/S0360-5442(02)00012-9

    Article  Google Scholar 

  • Han W, Kim K-Y, Choung S, Jeong J, Jung N-H, Park E (2014) Non-parametric simulations-based conditional stochastic predictions of geologic heterogeneities and leakage potentials for hypothetical CO2 sequestration sites. Environ Earth Sci 71:2739–2752. doi:10.1007/s12665-013-2653-z

    Article  Google Scholar 

  • Hanken NM, Nielsen JK (2013) Upper Carboniferous–lower permian palaeoaplysina build-ups on Svalbard: the influence of climate, salinity and sea-level. In: Gasiewicz A, Słowakiewicz M (eds) Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact. Geological Society, London, Special Publications, vol 376, pp 269–305

  • Holloway S, Vincent CJ, Bentham MS, Kirk KL (2006) Top-down and bottom-up estimates of CO2 storage capacity in the United Kingdom sector of the southern North Sea basin. Environ Geosci 13:71–84. doi:10.1306/eg.11080505015

    Article  Google Scholar 

  • Hooker JN, Gale JFW, Gomez LA, Laubach SE, Marrett R, Reed RM (2009) Aperture-size scaling variations in a low-strain opening-mode fracture set, Cozzette Sandstone, Colorado. J Struct Geol 31:707–718. doi:10.1016/j.jsg.2009.04.001

    Article  Google Scholar 

  • Hovorka SD, Doughty C, Benson SM, Pruess K, Knox PR (2004) The impact of geological heterogeneity on CO2 storage in brine formations: a case study from the Texas Gulf Coast. In: Baines SJ, Worden RH (eds) Geological Storage of Carbon Dioxide, vol 233. vol 1. Geological Society of London, London, pp 147–163. doi:10.1144/gsl.sp.2004.233.01.10

  • Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13:105–121. doi:10.1306/eg.11210505011

    Article  Google Scholar 

  • Iding M, Ringrose P (2010) Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int J Greenh Gas Control 4:242–248. doi:10.1016/j.ijggc.2009.10.016

    Article  Google Scholar 

  • IPCC (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Carbon dioxide capture and storage. Cambridge University Press, Cambridge, p 443

    Google Scholar 

  • Jones CM, Chaves HAF (2011) Assessment of yet-to-find oil in the Brazilian pre-salt region. SPE Int 143911:8

    Google Scholar 

  • Juanes R, Spiteri EJ, Orr FM Jr, Blunt MJ (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res 42:W12418. doi:10.1029/2005wr004806

    Google Scholar 

  • Keller A (1998) High resolution, non-destructive measurement and characterization of fracture apertures. Int J Rock Mech Min Sci 35:1037–1050. doi:10.1016/s0148-9062(98)00164-8

    Article  Google Scholar 

  • Kim TH, Schechter DS (2009) Estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using fractal discrete fracture networks. SPE J 110720:11

    Google Scholar 

  • Larsen L (2010) Analyses of Injection and Falloff Data from Dh4, 12 Aug–4 Sept, 2010. unpublished UNIS CO2 lab report, Longyearbyen, Norway

  • Larsen L (2012) Summary of Well Test Results from DH4, DH5, DH6, DH5R and DH7a. unbpublished UNIS CO2 lab report, Longyearbyen, Svalbard

  • Lindeberg E (2013) Calculation of thermodynamic properties of CO2, CH4, H2O and their mixtures also including salt with the Excel macro “CO2 Thermodynamics”. SINTEF, Trondheim

    Google Scholar 

  • Lindeberg E, Vuillaume J-F, Ghaderi A (2009) Determination of the CO2 storage capacity of the Utsira formation. Energy Proc 1:2777–2784. doi:10.1016/j.egypro.2009.02.049

    Article  Google Scholar 

  • Lokalstyre (2011) [Årsberetning 2011] (in Norwegian). Longyearbyen Lokalstyre, Longyearbyen (Annual report 2011)

  • Matter JM, Kelemen PB (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci 2:837–841

    Article  Google Scholar 

  • McGlade CE (2012) A review of the uncertainties in estimates of global oil resources. Energy 47:262–270. doi:10.1016/j.energy.2012.07.048

    Article  Google Scholar 

  • Mitiku A, Bauer S (2013) Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environ Earth Sci 70:3661–3673. doi:10.1007/s12665-013-2580-z

    Article  Google Scholar 

  • Mørk MBE (2013) Diagenesis and quartz cement distribution of low-permeability Upper Triassic—Middle Jurassic reservoir sandstones, Longyearbyen CO2 lab well site in Svalbard, Norway. AAPG Bull 97:577–596. doi:10.1306/10031211193

    Article  Google Scholar 

  • Nagy J, Hess S, Dypvik H, Bjærke T (2011) Marine shelf to paralic biofacies of Upper Triassic to Lower Jurassic deposits in Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol 300:138–151. doi:10.1016/j.palaeo.2010.12.018

    Article  Google Scholar 

  • NETL (2010) Carbon sequestration atlas of the USA and Canada. US Department of Energy, Pittsburgh

    Google Scholar 

  • Nilsen HM, Syversveen AR, Lie K-A, Tveranger J, Nordbotten JM (2012) Impact of top-surface morphology on CO2 storage capacity. Int J Greenh Gas Control 11:221–235. doi:10.1016/j.ijggc.2012.08.012

    Article  Google Scholar 

  • Nordbotten JM, Celia MA, Bachu S (2005) Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp Porous Med 58:339–360. doi:10.1007/s11242-004-0670-9

    Article  Google Scholar 

  • Nordbotten JM, Flemisch B, Gasda SE, Nilsen HM, Fan Y, Pickup GE, Wiese B, Celia MA, Dahle HK, Eigestad GT, Pruess K (2012) Uncertainties in practical simulation of CO2 storage. Int J Greenh Gas Control 9:234–242. doi:10.1016/j.ijggc.2012.03.007

    Article  Google Scholar 

  • Ogata K, Senger K, Braathen A, Tveranger J, Olaussen S (2012) The importance of natural fractures in a tight reservoir for potential CO2 storage: case study of the upper Triassic to middle Jurassic Kapp Toscana Group (Spitsbergen, Arctic Norway). In: Spence GH, Redfern J, Aguilera R, Bevan TG, Cosgrove JW, Couples GD, Daniel JM (eds) Advances in the Study of Fractured Reservoirs, vol 374. vol Geological Society of London Special Publication. Geological Society of London, London, p 22. doi:10.1144/SP374.9

  • Ogata K, Senger K, Braathen A, Tveranger J, Olaussen S (2014) Regional fracture patterns of relevance for fluid flow in the Longyearbyen CO2 Lab reservoir-caprock succession, Svalbard. Nor J Geol (in press)

  • Pfennig A, Linke B, Kranzmann A (2011) Corrosion behaviour of pipe steels exposed for 2 years to CO2-saturated saline aquifer environment similar to the CCS-site Ketzin, Germany. Energy Proc 4:5122–5129. doi:10.1016/j.egypro.2011.02.488

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Montemagno CD, Nolte DD (1997) Volumetric imaging of aperture distributions in connected fracture networks. Geophys Res Lett 24:2343–2346. doi:10.1029/97gl02057

    Article  Google Scholar 

  • Senger K, Bünz S, Mienert J (2010) First-Order Estimation of In-Place Gas Resources at the Nyegga Gas Hydrate Prospect, Norwegian Sea. Energies 3:2001–2026. doi:10.3390/en3122001

    Article  Google Scholar 

  • Senger K, Roy S, Braathen A, Buckley SJ, Bælum K, Gernigon L, Mjelde R, Noormets R, Ogata K, Olaussen S, Planke S, Ruud BO, Tveranger J (2013a) Geometries of doleritic intrusions in central Spitsbergen, Svalbard: an integrated study of an onshore-offshore magmatic province with implications on CO2 sequestration. Nor J Geol 93:143–166

    Google Scholar 

  • Senger K, Tveranger J, Ogata K, Braathen A, Olaussen S (2013b) Reservoir characterization and modelling of a naturally fractured siliciclastic CO2 sequestration site, Svalbard, Arctic Norway. vol 2013-2. unpublished UNIS CO2 lab report, Longyearbyen, Svalbard

  • Shafeen A, Croiset E, Douglas PL, Chatzis I (2004) CO2 sequestration in Ontario, Canada. Part II: cost estimation. Energy Convers Manag 45:3207–3217. doi:10.1016/j.enconman.2003.12.018

    Article  Google Scholar 

  • Smith M, Campbell D, Mackay E, Polson D (2011) CO2 aquifer storage site evaluation and monitoring—Understanding the challenges of CO2 storage: results of the CASSEM Project. Heriot-Watt University, Edinburgh

    Google Scholar 

  • Span R, Wagner W (1996) A New equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596

    Article  Google Scholar 

  • Stemmerik L, Larssen GB (1993) Diagenesis and porosity of Lower Permian Palaeoaplysina buildups, Bjørnøya, Barents Sea: an example of diagenetic response to high frequency sea level fluctuations in an arid climate. In: Horbury AD, Robinson AG (eds) Diagenesis and Basin Development, vol 36. American Association of Petroleum Geologists Studies in Geology, Tulsa, pp 199–211

    Google Scholar 

  • Stemmerik L, Worsley D (2005) 30 years on—Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Nor J Geol 85:151–168

  • Stemmerik L, Elvebakk G, Worsley D (1999) Upper Palaeozoic carbonate reservoirs on the Norwegian arctic shelf: delineation of reservoir models with application to the Loppa High. Pet Geosci 5:173–187

    Article  Google Scholar 

  • Tiab D, Restrepo DP, Igbokoyi A (2006) Fracture porosity of naturally fractured reservoirs. SPE J 104056:13

    Google Scholar 

  • van der Meer LGH (1995) The CO2 storage efficiency of aquifers. Energy Convers Manag 36:513–518. doi:10.1016/0196-8904(95)00056-j

    Article  Google Scholar 

  • van Stappen J (2013) Pore-scale Characterization and Modelling of Kapp Toscana Group reservoir sections using X-ray micro-CT. Unpublished MSc thesis, University of Ghent MSc:98

  • Wallace KJ, Meckel TA, Carr DL, Treviño RH, Yang C (2014) Regional CO2 sequestration capacity assessment for the coastal and offshore Texas Miocene interval. Greenh Gases Sci Technol 4:53–65. doi:10.1002/ghg.1380

    Article  Google Scholar 

  • Worsley D (2008) The post-Caledonian development of Svalbard and the western Barents Sea. Polar Res 27:298–317. doi:10.1111/j.1751-8369.2008.00085.x

    Article  Google Scholar 

  • Yang F, Bai B, Dunn-Norman S, Nygaard R, Eckert A (2014) Factors affecting CO2 storage capacity and efficiency with water withdrawal in shallow saline aquifers. Environ Earth Sci 71:267–275. doi:10.1007/s12665-013-2430-z

    Article  Google Scholar 

  • Zeng L, Su H, Tang X, Peng Y, Gong L (2013) Fractured tight sandstone oil and gas reservoirs: a new play type in the Dongpu depression, Bohai Bay Basin, China. AAPG Bull 97:363–377

    Article  Google Scholar 

  • Zhou Q, Birkholzer JT, Tsang C-F, Rutqvist J (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J Greenh Gas Control 2:626–639. doi:10.1016/j.ijggc.2008.02.004

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Norwegian Research Council (“GeC” project of the CLIMIT program, #200006). Per Audun Hole at Geoknowledge AS (now Schlumberger) provided access to the GeoX software, Erik Lindeberg at SINTEF provided the CO2 Therm software for calculating CO2 properties and Schlumberger provided an academic license of Petrel. This study was undertaken in close collaboration with the Longyearbyen CO2 lab project administered by the UNIS CO2 lab AS (http://co2-ccs.unis.no), and we particularly appreciate the technical discussions with the project partners. Axel Liebscher and two anonymous reviewers provided constructive and insightful comments that greatly improved an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Senger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senger, K., Tveranger, J., Braathen, A. et al. CO2 storage resource estimates in unconventional reservoirs: insights from a pilot-sized storage site in Svalbard, Arctic Norway. Environ Earth Sci 73, 3987–4009 (2015). https://doi.org/10.1007/s12665-014-3684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3684-9

Keywords

Navigation