Skip to main content
Log in

Naturally occurring radionuclides and their geochemical interactions at a geothermal site in the North German Basin

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The activities of the most common, naturally occurring radionuclides 238U, 226Ra, 210Pb, 228Ra, 228Th, and 40K were measured by gamma-ray spectrometry in samples from reservoir rocks, geothermal fluids, and mineral precipitates at the geothermal research site Groß Schönebeck (North German Basin). Results demonstrated that the specific activity of the reservoir rock is within the range of the mean concentration in the upper earth crust of <800 Bq/kg for 40K and <60 Bq/kg for radionuclides of the 238U and 232Th series, respectively. The geothermal fluid showed elevated activity concentrations (up to 100 Bq/l) for 226Ra, 210Pb, and 228Ra, as compared to concentrations found in natural groundwater. Their concentration in filter residues even increased up to 100 Bq/g. These residues contain predominantly two different mineral phases: a Sr-rich barite (Sr, BaSO4) and laurionite (PbOHCl), which both precipitate upon cooling from the geothermal fluid. Thereby they presumably enrich the radionuclides of Ra (by substitution of Ba) and Pb. Analysis of these precipitates further showed an increased 226Ra/228Ra ratio from around 1–1.7 during the initial months of fluid production indicating a change in fluid composition over time which can be explained by different contributions of stimulated reservoir rock areas to the overall produced fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agbalagba EO, Avwiri GO, Ononugbo CP (2013) Evaluation of naturally occurring radioactivity materials (NORM) of soil and sediments in oil and gas wells in Western Niger delta region of Nigeria. Environ Earth Sci 70(6):2613–2622

    Article  Google Scholar 

  • Amin RM (2012) Gamma radiation measurements of naturally occurring radioactive samples from commercial Egyptian granites. Environ Earth Sci 67:771–775

    Article  Google Scholar 

  • Bakr WF (2010) Assessment of the radiological impact of oil refining industry. J Environ Radioact 101(3):237–243

    Article  Google Scholar 

  • BfS (2009) Strahlenexposition durch natürliche Radionuklide im Trinkwasser in der Bundesrepublik Deutschland. urn:nbn:de:0221-20100319945

  • Blöcher G, Reinsch T, Henninges J, Zimmermann G (2013) Opening of a gel/proppant fracture during production. Abstract volume 2013. In: 2nd international conference on enhanced geothermal systems, Potsdam, p 43

  • Born HJ (1936) Kali. verwandte Salze und Erdöl 30:41–45

    Google Scholar 

  • Burton EF (1904) A radioactive gas from crude petroleum. Philos Mag 8:498–508

    Article  Google Scholar 

  • Curtia E, Fujiwarab K, Iijimab K, Titsa J, Cuestaa C, Kitamurab A, Glausa MA, Müllera A (2010) Radium uptake during barite recrystallization at 23 ± 2 °C as a function of solution composition: an experimental 133Ba and 226Ra tracer study. Geochim Cosmochim Acta 74(12):3553–3570

    Article  Google Scholar 

  • Degering D, Köhler M (2009) Natürliche radionuklide in anlagen der tiefen geothermie. In: Proceedings geothermiekongress, Bochum, 2009

  • Degering D, Köhler M (2011) Vorkommen und verhalten natürlicher radionuklide im aquifer, im fluid und in den ablagerungen der geothemieanlage Neustdt-Glewe. Z Geol Wiss 39(3/4):275–290

    Google Scholar 

  • Degering D, Köhler M, Hielscher (2011) Gamma-spectrometric analysis of high salinity fluids—how to analyze radionuclides of the thorium decay chain far from radioactive equilibrium? Appl Radiat Isot 69(11):1613–1617

    Article  Google Scholar 

  • Feldbusch E, Regenspurg S, Banks J, Milsch H, Saadat A (2013) Alteration of fluid properties during the initial operation of a geothermal plant: results from in situ measurements in Groß Schönebeck. Environ Earth Sci 70(8):3447–3458

    Article  Google Scholar 

  • Gonzalez-Fernandez D, Garrido-Perez MC, Casas-Ruiz M, Barbero L, Nebot-Sanz E (2012) Radiological risk assessment of naturally occurring radioactive materials in marine sediments and its application in industrialized coastal areas: Bay of Algeciras, Spain. Environ Earth Sci 66:1175–1181

    Article  Google Scholar 

  • Hartley (1993) Disposal of radioactive waste from mining and processing mineral sands. Radiat Prot Aust 11:53–59

    Google Scholar 

  • Henninges J, Brandt W, Erbas K, Moeck I, Saadat A, Reinsch T, Zimmermann G (2012) Downhole monitoring during hydraulic experiments at the in situ geothermal lab Gross Schönebeck. In: 37th Workshop on geothermal reservoir engineering, Stanford, pp 51–56

  • Kadyrzhanov KK, Tuleushev AZ, Marabaev ZN, Kazachevskiy V, Lukashenko SN, Pekhachek V, Solodukhin VP, Pikalova LI, Knyazev BB, Stepanov VM, Kabirova GM, Feofanovi VA (2005) Radioactive components of scales at the inner surface of pipes in oilfields of Kazakhstan. J Radioanal Nucl Chem 264(2):413–416

    Article  Google Scholar 

  • Kolb WA, Wojcik M (1985) Enhanced radioactivity due to natural oil and gas production and related radiological problems. Sci Total Environ 45:77-45

    Article  Google Scholar 

  • Kvasnicka J (1996) Radiation protection in the offshore petroleum industry. In: Proceedings of the 1996 international congress on radiation protection of the International Radiation Protection Association, Vienna, 14–19 April, 1996. vol 4, pp 621–623

  • Lüders V, Plessen B, Romer RL, Weise SM, Banks DA, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and upper carboniferous formation waters from the North German Basin. Chem Geol 276(3–4):198–208

    Article  Google Scholar 

  • Martin P, Akber RA (1999) Radium isotopes as indicators of adsorption-desorption interactions and barite formation in groundwater. J Environ Radioact 46(3):271–286

    Article  Google Scholar 

  • Milsch H, Giese R, Poser M, Kranz S, Feldbusch E, Regenspurg S (2013) Technical paper: FluMo—a mobile fluid—chemical monitoring unit for geothermal plants. Environ Earth Sci 70(8):3459–3463

    Article  Google Scholar 

  • Moeck I, Brandt W, Schulz A (2005) Geologisch—technischer Abschlussbericht der Bohrung Gt Groß Schönebeck 4/05

  • Moeck I, Brandt W, Zimmermann G, Saadat A, Holl HG, Backers T, Huenges E (2006) Die neue geothermalbohrung Groß Schönebeck. In: Tagungsband, 9. Geothermische fachtagung 2006, Karlsruhe, pp 35–40

  • Möller P, Weise SM, Tesmer M, Dulski P, Pekdeger A, Bayer U, Magri F (2008) Salinization of groundwater in the North German Basin: results from conjoint investigation of major, trace element and multi-isotope distribution. Int J Earth Sci 97(5):1057–1073

    Article  Google Scholar 

  • Paschoa AS (1997) Naturally occurring radioactive materials (NORM) and petroleum origin. Appl Radiat Isot 48(10–12):1391–1396

    Article  Google Scholar 

  • Phillips EJ, Landa ER, Kraemer T, Zielinski R (2001) Sulfate-reducing bacteria release barium and radium from naturally occurring radioactive material in oil-field barite. Geomicrobiol J 18(2):67–182

    Article  Google Scholar 

  • Regenspurg S, Wiersberg T, Brandt W, Huenges E, Saadat A, Schmidt K, Zimmermann G (2010) Geochemical properties of saline geothermal fluids from the in situ geothermal laboratory Groß Schönebeck (Germany). Chem Erde 70(Suppl. 3):3–12

    Article  Google Scholar 

  • Regenspurg et al 2013 (NACE)

  • Savonenkov VG, Smirnova EA, Trifonov VA (1997) Occurrence of radium in deposits from petroleum waters. Radiochemistry 39(1):86–89

    Google Scholar 

  • Schellschmidt R, Hurter S (2003) Atlas of geothermal resources in Europe. Geothermics 32(4–6):779–787

    Google Scholar 

  • Schreiber J, Nitschke F, Seibt A, Genter A (2012) Geochemical and mineralogical monitoring of the geothermal power plant in Soultz-sous-Forêts (France). In: Proceedings, 37th workshop on geothermal reservoir engineering, Stanford University, Stanford, 30 Jan–1 Feb 2012

  • Tcherepennikov (1928) The occurrence of radioactivity in the Uchtaregion (in Russian). Vestn Geologiceskogo Komite 4(1928):18–23

    Google Scholar 

  • UNSCEAR (2000) United Nations scientific committee on the effects of atomic radiation UNSCEAR 2000. Report to the General Assembly, with scientific annexes, vol I, Sources Annex B, Exposures from natural radiation sources

  • Zimmermann G, Reinicke A (2010) Hydraulic stimulation of a deep sandstone reservoir to develop an enhanced geothermal system: laboratory and field experiments. Geothermics 39:70–77

    Article  Google Scholar 

  • Zimmermann G, Moeck I, Blöcher G (2010) Cyclic water frac stimulation to develop an enhanced geothermal system (EGS)—conceptual design and experimental results. Geothermics 39(1):59–69

    Article  Google Scholar 

  • Zukin JG, Hammond DE, Teh-Lung K, Elders WA (1987) Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea geothermal field, southeastern California. Geochim Cosmochim Acta 51(10):2719–2731

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Elvira Feldbusch and Carolin Zorn from GFZ and Christel Busse from BfS for collecting and preparation of samples. Many thanks also to Sabine Rauschenberg (TU Berlin) for CNS and Rudolf Naumann from GFZ for XRD analysis. We also like to thank Guido Blöcher for providing hydraulic data. The current research was financed by the Federal Ministry of Science and Education (BMBF) within the project GeoEn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Regenspurg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regenspurg, S., Dilling, J., Mielcarek, J. et al. Naturally occurring radionuclides and their geochemical interactions at a geothermal site in the North German Basin. Environ Earth Sci 72, 4131–4140 (2014). https://doi.org/10.1007/s12665-014-3306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3306-6

Keywords

Navigation