Skip to main content
Log in

Skeletal muscle hypertrophy: molecular and applied aspects of exercise physiology

Hypertrophie der Skelettmuskulatur – molekulare und anwendungsbezogene Aspekte der Trainingsphysiologie

  • Review
  • Published:
German Journal of Exercise and Sport Research Aims and scope Submit manuscript

Abstract

Studies from the 20th century had proposed that exercise-derived anabolism is the result of acute release of anabolic hormones. Recent advances in molecular biology have validated the hormonal theory, but have raised the question of whether exercise-induced anabolic hormones are related to chronic hypertrophy. Intrinsic factors of muscle contraction, on the other hand, seem to play an important role in exercise-induced protein synthesis and hypertrophy. This review seeks to highlight the role of anabolic pathways related to resistance exercise and express its applicability in resistance training considering the following variables: (a) intensity; (b) volume; (c) rest interval; (d) types of contraction; (e) velocity of contraction; (f) exercise order; and (g) frequency. We conclude that resistance training-induced hypertrophy is likely explained by intrinsic factors rather than by the hormonal theory. Regarding the following training recommendations, multiple sets, long rest intervals, dynamic and high-velocity contractions and prioritizing the exercise order are most likely to produce the greatest enhancement in skeletal muscle hypertrophy. Training intensity may vary, as low (30% one-repetition maximum [1RM]) or high (80% 1RM) intensities induce similar improvements in hypertrophy when performed to a maximal level of effort. Likewise, training frequency may vary according to individual needs, as the total volume performed within a training week appears to be more strongly related to hypertrophy than the number of weekly training sessions. This review contributes to the development of sports performance, aesthetics, and quality of life, and to the prevention or treatment of muscle loss caused by aging or illness.

Zusammenfassung

Studien aus dem 20. Jahrhundert hatten gezeigt, dass ein durch körperliche Betätigung verursachter Anabolismus das Ergebnis einer akuten Freisetzung von anabolen Hormonen ist. Die jüngsten Fortschritte in der Molekularbiologie haben die Gültigkeit der Hormontheorie bestätigt und die Frage aufgeworfen, ob die durch körperliche Betätigung induzierten anabolen Hormone mit chronischer Hypertrophie zusammenhängen. Andererseits scheinen intrinsische Faktoren der Muskelkontraktion eine wichtige Rolle bei der durch körperliche Betätigung ausgelösten Proteinsynthese und Hypertrophie zu spielen. In dieser Übersicht soll die Rolle von anabolen Pfaden im Zusammenhang mit Widerstandstraining hervorgehoben und ihre Anwendbarkeit im Krafttraining unter Berücksichtigung der folgenden Variablen zum Ausdruck gebracht werden: (a) Intensität; (b) Volumen; (c) Ruhepause; (d) Arten der Kontraktion; (e) Kontraktionsgeschwindigkeit; (f) Ausübungsauftrag; und (g) Frequenz. Wir schließen daraus, dass die durch das Widerstandstraining induzierte Hypertrophie wahrscheinlich eher durch intrinsische Faktoren als durch die Hormontheorie erklärt wird. In Bezug auf Trainingsempfehlungen: Mehrere Sätze, lange Ruheintervalle, dynamische Kontraktionen und Kontraktionen mit hoher Geschwindigkeit führen vorrangig in der Trainingsreihenfolge mit größter Wahrscheinlichkeit zu einer Verbesserung der Skelettmuskelhypertrophie. Die Trainingsintensität kann variieren, da niedrige (30 % 1RM) oder hohe (80 % 1RM) Intensitäten bei maximaler Anstrengung zu ähnlichen Verbesserungen der Hypertrophie führen. Ebenso kann die Trainingsfrequenz von den individuellen Bedürfnissen abhängen, da das Gesamtvolumen innerhalb einer Trainingswoche offenbar stärker mit der Hypertrophie zusammenhängt als die Anzahl der wöchentlichen Trainingseinheiten. Diese Überprüfung trägt zur Entwicklung der sportlichen Leistung, der Ästhetik und der Lebensqualität sowie zur Vorbeugung oder Behandlung von Muskelschwund bei, der durch Alterung oder Krankheit verursacht wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahtiainen, J. P., Pakarinen, A., Alen, M., Kraemer, W. J., & Hakkinen, K. (2005). Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. Journal of Strength and Conditioning Research, 19(3), 572–582.

    PubMed  Google Scholar 

  • Ahtiainen, J. P., Walker, S., Silvennoinen, M., Kyröläinen, H., Nindl, B. C., Häkkinen, K., Nyman, K., Selänne, H., & Hulmi, J. J. (2015). Exercise type and volume alter signaling pathways regulating skeletal muscle glucose uptake and protein synthesis. European Journal of Applied Physiology, 115(9), 1835–1845.

    Article  CAS  PubMed  Google Scholar 

  • American College of Sports Medicine (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687–708.

    Article  Google Scholar 

  • Arndt, V., Dick, N., Tawo, R., Dreiseidler, M., Wenzel, D., Hesse, M., Fürst, D. O., Saftig, P., Saint, R., Fleischmann, B. K., Hoch, M., & Höhfeld, J. (2010). Chaperone-assisted selective autophagy is essential for muscle maintenance. Current Biology, 20(2), 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Baar, K., & Esser, K. (1999). Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. American Journal of Physiology, 276(1), C120–127.

    Article  CAS  PubMed  Google Scholar 

  • Barbalho, M., Coswig, V. S., Steele, J., Fisher, J. P., Giessing, J., & Gentil, P. (2019). Evidence of ceiling effect for training volume in muscle hypertrophy and strength in trained men—less is more? International Journal of Sports Physiology and Performance, 15(2), 268–277.

    Article  Google Scholar 

  • Basualto-Alarcon, C., Jorquera, G., Altamirano, F., Jaimovich, E., & Estrada, M. (2013). Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Medicine and Science in Sports and Exercise, 45(9), 1712–1720.

    Article  CAS  PubMed  Google Scholar 

  • Bellamy, L. M., Joanisse, S., Grubb, A., Mitchell, C. J., McKay, B. R., Phillips, S. M., Baker, S., & Parise, G. (2014). The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One, 9(10), e109739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beugnet, A., Tee, A. R., Taylor, P. M., & Proud, C. G. (2003). Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochemical Journal, 372(2), 555–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomstrand, E., Eliasson, J., Karlsson, H. K., & Köhnke, R. (2006). Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. Journal of Nutrition, 136(1 Suppl), 269S–273S.

    Article  CAS  PubMed  Google Scholar 

  • Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J., & Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 3(11), 1014–1019.

    Article  CAS  PubMed  Google Scholar 

  • Burd, N. A., Andrews, R. J., West, D. W., Little, J. P., Cochran, A. J., Hector, A. J., Cashaback, J. G., Gibala, M. J., Potvin, J. R., Baker, S. K., & Phillips, S. M. (2012b). Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. Journal of Physiology, 590(2), 351–362.

    Article  CAS  PubMed  Google Scholar 

  • Burd, N. A., Holwerda, A. M., Selby, K. C., West, D. W., Staples, A. W., Cain, N. E., Cashaback, J. G., Potvin, J. R., Baker, S. K., & Phillips, S. M. (2010a). Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. Journal of Physiology, 588(16), 3119–3130.

    Article  CAS  PubMed  Google Scholar 

  • Burd, N. A., Mitchell, C. J., Churchward-Venne, T. A., & Phillips, S. M. (2012a). Bigger weights may not beget bigger muscles: evidence from acute muscle protein synthetic responses after resistance exercise. Applied Physiology, Nutrition, and Metabolism, 37(3), 551–554.

    Article  CAS  PubMed  Google Scholar 

  • Burd, N. A., West, D. W., Staples, A. W., Atherton, P. J., Baker, J. M., Moore, D. R., Holwerda, A. M., Parise, G., Rennie, M. J., Baker, S. K., & Phillips, S. M. (2010b). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One, 5(8), e12033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buresh, R., Berg, K., & French, J. (2009). The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. Journal of Strength and Conditioning Research, 23(1), 62–71.

    Article  PubMed  Google Scholar 

  • Burry, M., Hawkins, D., & Spangenburg, E. E. (2007). Lengthening contractions differentially affect p70s6k phosphorylation compared to isometric contractions in rat skeletal muscle. European Journal of Applied Physiology, 100(4), 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Cadore, E. L., Gonzalez-Izal, M., Pallarés, J. G., Rodriguez-Falces, J., Häkkinen, K., Kraemer, W. J., Pinto, R. S., & Izquierdo, M. (2014). Muscle conduction velocity, strength, neural activity, and morphological changes after eccentric and concentric training. Scandinavian Journal of Medicine & Science in Sports, 24(5), e343–352.

    Article  CAS  Google Scholar 

  • Candow, D. G., & Burke, D. G. (2007). Effect of short-term equal-volume resistance training with different workout frequency on muscle mass and strength in untrained men and women. Journal of Strength and Conditioning Research, 21(1), 204–207.

    Article  PubMed  Google Scholar 

  • Carroll, K. M., Bazyler, C. D., Bernards, J. R., Taber, C. B., Stuart, C. A., DeWeese, B. H., Sato, K., & Stone, M. H. (2019). Skeletal muscle fiber adaptations following resistance training using repetition maximums or relative intensity. Sports (Basel), 7(7), 169.

    Article  Google Scholar 

  • Carroll, K. M., Bernards, J. R., Bayzler, C. D., Taber, C. D., Stuart, C. A., DeWeese, B. H., Sato, K., & Stone, M. H. (2018). Divergent performance outcomes following resistance training using repetition maximums or relative intensity. International Journal of Sports Physiology and Performance, 14(1), 46–54.

    Article  Google Scholar 

  • Chaves, C. P., Simao, R., Miranda, H., Ribeiro, J., Soares, J., Salles, B., Silva, A., & Mota, M. P. (2013). Influence of exercise order on muscle damage during moderate-intensity resistance exercise and recovery. Research in Sports Medicine, 21(2), 176–186.

    Article  PubMed  Google Scholar 

  • Chen, T. C., Nosaka, K., & Sacco, P. (2007). Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. Journal of Applied Physiology, 102(3), 992–999.

    Article  PubMed  Google Scholar 

  • Damas, F., Barcelos, C., Nóbrega, S. R., Ugrinowitsch, C., Lixandrão, M. E., Santos, L. M. E. D., Conceição, M. S., Vechin, F. C., & Libardi, C. A. (2019). Individual muscle hypertrophy and strength responses to high vs. low resistance training frequencies. Journal of Strength and Conditioning Research, 33(4), 897–901.

    Article  PubMed  Google Scholar 

  • Deldicque, L., Atherton, P., Patel, R., Theisen, D., Nielens, H., Rennie, M. J., & Francaux, M. (2008). Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. European Journal of Applied Physiology, 104(1), 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, J. M., Fry, C. S., Drummond, M. J., Gundermann, D. M., Walker, D. K., Glynn, E. L., Timmerman, K. L., Dhanani, S., Volpi, E., & Rasmussen, B. B. (2011). Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. Journal of Nutrition, 141(5), 856–862.

    Article  CAS  PubMed  Google Scholar 

  • Dreyer, H. C., Drummond, M. J., Pennings, B., Fujita, S., Glynn, E. L., Chinkes, D. L., Dhanani, S., Volpi, E., & Rasmussen, B. B. (2008). Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. American Journal of Physiology – Endocrinology and Metabolism, 294(2), E392–400.

    Article  CAS  PubMed  Google Scholar 

  • Dreyer, H. C., Fujita, S., Glynn, E. L., Drummond, M. J., Volpi, E., & Rasmussen, B. B. (2010). Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex. Acta Physiologica, 199(1), 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, M. J., Fry, C. S., Glynn, E. L., Dreyer, H. C., Dhanani, S., Timmerman, K. L., Volpi, E., & Rasmussen, B. B. (2009). Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. Journal of Physiology, 587(Pt 7), 1535–1546.

    Article  CAS  PubMed  Google Scholar 

  • Dyle, M. C., Ebert, S. M., Cook, D. P., Kunkel, S. D., Fox, D. K., Bongers, K. S., Bullard, S. A., Dierdorff, J. M., & Adams, C. M. (2014). Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy. Journal of Biological Chemistry, 289(21), 14913–14924.

    Article  CAS  PubMed  Google Scholar 

  • Eliasson, J., Elfegoun, T., Nilsson, J., Köhnke, R., Ekblom, B., & Blomstrand, E. (2006). Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. American Journal of Physiology – Endocrinology and Metabolism, 291(6), E1197–1205.

    Article  CAS  PubMed  Google Scholar 

  • Farthing, J. P., & Chilibeck, P. D. (2003). The effects of eccentric and concentric training at different velocities on muscle hypertrophy. European Journal of Applied Physiology, 89(6), 578–586.

    Article  PubMed  Google Scholar 

  • Farup, J., Rahbek, S. K., Riis, S., Vendelbo, M. H., Paoli, F. D., & Vissing, K. (2014). Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. Journal of Applied Physiology, 117(8), 898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo, V. C., & Nader, G. A. (2012). Ursolic acid directly promotes protein accretion in myotubes but does not affect myoblast proliferation. Cell Biochemistry and Function, 30(5), 432–437.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo, T., Rhea, M. R., Bunker, D., Dias, I., Freitas de Salles, B., Fleck, S., & Simao, R. (2011). Influence of exercise order on muscle damage during moderate-intensity resistance exercise and recovery. Human Movement, 12(3), 237–241.

    Article  Google Scholar 

  • Gentil, P., Fischer, B., Martorelli, A. S., Lima, R. M., & Bottaro, M. (2015). Effects of equal-volume resistance training performed one or two times a week in upper body muscle size and strength of untrained young men. Journal of Sports Medicine and Physical Fitness, 55(3), 144–149.

    CAS  PubMed  Google Scholar 

  • Goodman, C. A., Frey, J. W., Mabrey, D. M., Jacobs, B. L., Lincoln, H. C., You, J. S., & Hornberger, T. A. (2011). The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. Journal of Physiology, 589(22), 5485–5501.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, C. A., Miu, M. H., Frey, J. W., Mabrey, D. M., Lincoln, H. C., Ge, Y., Chen, J., & Hornberger, T. A. (2010). A phosphatidylinositol 3‑kinase/protein kinase B‑independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Molecular Biology of the Cell, 21(18), 3258–3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, D. L., Philp, A., MacKenzie, M. G., & Baar, K. (2010). A limited role for PI(3,4,5)P3 regulation in controlling skeletal muscle mass in response to resistance exercise. PLoS One, 5(7), e11624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hass, C. J., Garzarella, L., de Hoyos, D., & Pollock, M. L. (2000). Single versus multiple sets in long-term recreational weightlifters. Medicine and Science in Sports and Exercise, 32(1), 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Haun, C. T., Vann, C. G., Mobley, C. B., Osburn, S. C., Mumford, P. W., Roberson, P. A., Romero, M. A., Fox, C. D., Parry, H. A., Kavazis, A. N., Moon, J. R., Young, K. C., & Roberts, M. D. (2019). Pre-training skeletal muscle fiber size and predominant fiber type best predict hypertrophic responses to 6 weeks of resistance training in previously trained young men. Frontiers in Physiology, 26(10), 297.

    Article  Google Scholar 

  • Hornberger, T. A., & Chien, S. (2006). Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. Journal of Cellular Biochemistry, 97(6), 1207–1216.

    Article  CAS  PubMed  Google Scholar 

  • Hornberger, T. A., Chu, W. K., Mak, Y. W., Hsiung, J. W., Huang, S. A., & Chien, S. (2006). The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4741–4746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornberger, T. A., Stuppard, R., Conley, K. E., Fedele, M. J., Fiorotto, M. L., Chin, E. R., & Esser, K. A. (2004). Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3‑kinase-, protein kinase B‑ and growth factor-independent mechanism. Biochemical Journal, 380(3), 795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaafar, R., De Larichaudy, J., Chanon, S., Euthine, V., Durand, C., Naro, F., Bertolino, P., Vidal, H., Lefai, E., & Némoz, G. (2013). Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Communication and Signaling: CCS, 11, 55.

    Article  CAS  Google Scholar 

  • Jenkins, N. D., Housh, T. J., Bergstrom, H. C., Cochrane, K. C., Hill, E. C., Smith, C. M., Johnson, G. O., Schmidt, R. J., & Cramer, J. T. (2015a). Muscle activation during three sets to failure at 80 vs. 30 % 1RM resistance exercise. European Journal of Applied Physiology, 115(11), 2335–2347.

    Article  PubMed  Google Scholar 

  • Jenkins, N. D., Housh, T. J., Buckner, S. L., Bergstrom, H. C., Cochrane, K. C., Hill, E. C., Smith, C. M., Schmidt, R. J., Johnson, G. O., & Cramer, J. T. (2015b). Neuromuscular adaptations after 2‑ and 4‑weeks of 80 % versus 30 % 1RM resistance training to failure. Journal of Strength and Conditioning Research, 30(8), 2174–2185.

    Article  Google Scholar 

  • Karlsson, H. K., Nilsson, P. A., Nilsson, J., Chibalin, A. V., Zierath, J. R., & Blomstrand, E. (2004). Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. American Journal of Physiology – Endocrinology and Metabolism, 287(1), E1–7.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, S. B., Brown, L. E., Hooker, S. F., Swan, P. D., Buman, M. P., Alvar, B. A., & Black, L. E. (2015). Comparison of concentric and eccentric bench press repetitions to failure. Journal of Strength and Conditioning Research, 29(4), 1027–1032.

    Article  PubMed  Google Scholar 

  • Koopman, R., Zorenc, A. H., Gransier, R. J., Cameron-Smith, D., & van Loon, L. J. (2006). Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. American Journal of Physiology – Endocrinology and Metabolism, 290(6), E1245–1252.

    Article  CAS  PubMed  Google Scholar 

  • Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35(4), 339–361.

    Article  PubMed  Google Scholar 

  • Kunkel, S. D., Suneja, M., Ebert, S. M., Bongers, K. S., Fox, D. K., Malmberg, S. E., Alipour, F., Shields, R. K., & Adams, C. M. (2011). mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metabolism, 13(6), 627–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman, N., Ledford, B., Di Fulvio, M., Frondorf, K., McPhail, L. C., & Gomez-Cambronero, J. (2007). Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. FASEB Journal, 21(4), 1075–1087.

    Article  CAS  PubMed  Google Scholar 

  • Linnamo, V., Pakarinen, A., Komi, P. V., Kraemer, W. J., & Häkkinen, K. (2005). Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. Journal of Strength and Conditioning Research, 19(3), 566–571.

    PubMed  Google Scholar 

  • Lopes, C. R., Crisp, A. H., Rodrigues, A. L., Teixeira, A. G., da Mota, G. R., & Verlengia, R. (2012). Fast contraction velocity in resistance exercise induces greater total volume load lifted and muscle strength loss in resistance-trained men. Revista Andaluza De Medicina Del Deporte, 5(4), 123–126.

    Article  Google Scholar 

  • Machado, M., Willardson, J. M., Silva, D. R., Frigulha, I. C., Koch, A. J., & Souza, S. C. (2012). Creatine kinase activity weakly correlates to volume completed following upper body resistance exercise. Research Quarterly for Exercise and Sport, 83(2), 276–281.

    Article  PubMed  Google Scholar 

  • McKendry, J., Perez-Lopez, A., McLeod, M., Luo, D., Dent, J. R., Smeuninx, B., Yu, J., Taylor, A. E., Philp, A., & Breen, L. (2016). Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signaling in young males. Experimental Physiology, 101(7), 866–882.

    Article  CAS  PubMed  Google Scholar 

  • McLester, J. R. J., Bishop, E., & Guilliams, M. E. (2000). Comparison of 1 day and 3 days per week of equal-volume resistance training in experienced subjects. Journal of Strength and Conditioning Research, 14(3), 273–281.

    Google Scholar 

  • Miranda, H., Figueiredo, T., Rodrigues, B., Paz, G. A., & Simão, R. (2013). Influence of exercise order on repetition performance among all possible combinations on resistance training. Research in Sports Medicine, 21(4), 355–366.

    Article  PubMed  Google Scholar 

  • Miranda, H., Fleck, S. J., Simão, R., Barreto, A. C., Dantas, E. H., & Novaes, J. (2007). Effect of two different rest period lengths on the number of repetitions performed during resistance training. Journal of Strength and Conditioning Research, 21(4), 1032–1036.

    PubMed  Google Scholar 

  • Miranda, H., Simao, R., dos Santos Vigário, P., de Salles, B. F., Pacheco, M. T., & Willardson, J. M. (2010). Exercise order interacts with rest interval during upper-body resistance exercise. Journal of Strength and Conditioning Research, 24(6), 1573–1577.

    Article  PubMed  Google Scholar 

  • Miranda, H., Simão, R., Moreira, L. M., de Souza, R. A., de Souza, J. A., de Salles, B. F., & Willardson, J. M. (2009). Effect of rest interval length on the volume completed during upper body resistance exercise. Journal of Sports Science & Medicine, 8(3), 388–392.

    Google Scholar 

  • Mitchell, C. J., Churchward-Venne, T. A., Bellamy, L., Parise, G., Baker, S. K., & Phillips, S. M. (2013). Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One, 8(10), e78636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, C. J., Churchward-Venne, T. A., West, D. W., Burd, N. A., Breen, L., Baker, S. K., & Phillips, S. M. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of Applied Physiology, 113(1), 71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki, M., McCarthy, J. J., Fedele, M. J., & Esser, K. A. (2011). Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3‑kinase/Akt signalling. Journal of Physiology, 589(7), 1831–1846.

    Article  CAS  PubMed  Google Scholar 

  • Mobley, C. B., Hornberger, T. A., Fox, C. D., Healy, J. C., Ferguson, B. S., Lowery, R. P., McNally, R. M., Lockwood, C. M., Stout, J. R., Kavazis, A. N., Wilson, J. M., & Roberts, M. D. (2015). Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle. Journal of the International Society of Sports Nutrition, 12, 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore, D. R., Young, M., & Phillips, S. M. (2012). Similar increases in muscle size and strength in young men after training with maximal shortening or lengthening contractions when matched for total work. European Journal of Applied Physiology, 112(4), 1587–1592.

    Article  PubMed  Google Scholar 

  • Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., Baechler, B. L., Baker, S. K., & Phillips, S. M. (2016). Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of Applied Physiology, 121(1), 129–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morán-Navarro, R., Pérez, C. E., Mora-Rodríguez, R., de la Cruz-Sánchez, E., González-Badillo, J. J., Sánchez-Medina, L., & Pallarés, J. G. (2017). Time course of recovery following resistance training leading or not to failure. European Journal of Applied Physiology, 117(12), 2387–2399.

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara, R., Kobayashi, K., Tsutaki, A., Lee, K., Abe, T., Fujita, S., Nakazato, K., & Ishii, N. (2013a). mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle. Journal of Applied Physiology, 114(7), 934–940.

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara, R., Loenneke, J. P., Thiebaud, R. S., & Abe, T. (2013b). Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. International Journal of Clinical Medicine, 4(2), 114–121.

    Article  Google Scholar 

  • O’Neil, T. K., Duffy, L. R., Frey, J. W., & Hornberger, T. A. (2009). The role of phosphoinositide 3‑kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. Journal of Physiology, 587(14), 3691–3701.

    Article  PubMed  CAS  Google Scholar 

  • Radaelli, R., Fleck, S. J., Leite, T., Leite, R. D., Pinto, R. S., Fernandes, L., & Simão, R. (2015). Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. Journal of Strength and Conditioning Research, 29(5), 1349–1358.

    Article  PubMed  Google Scholar 

  • Rahbek, S. K., Farup, J., Møller, A. B., Vendelbo, M. H., Holm, L., Jessen, N., & Vissing, K. (2014). Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids, 46(10), 2377–2392.

    Article  CAS  PubMed  Google Scholar 

  • Rhea, M. R., Alvar, B. A., Ball, S. D., & Burkett, L. N. (2002). Three sets of weight training superior to 1 set with equal intensity for eliciting strength. Journal of Strength and Conditioning Research, 16(4), 525–529.

    PubMed  Google Scholar 

  • Ribeiro, A. S., Schoenfeld, B. J., Silva, D. R., Pina, F. L., Guariglia, D. A., Porto, M., Maestá, N., Burini, R. C., & Cyrino, E. S. (2015). Effect of two- versus three-way split resistance training routines on body composition and muscular strength in bodybuilders: a pilot study. International Journal of Sport Nutrition and Exercise Metabolism, 25(6), 559–565.

    Article  PubMed  Google Scholar 

  • Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D., & Glass, D. J. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology, 3(11), 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  • Roschel, H., Ugrinowistch, C., Barroso, R., Batista, M. A., Souza, E. O., Aoki, M. S., Siqueira-Filho, M. A., Zanuto, R., Carvalho, C. R., Neves, M., Mello, M. T., & Tricoli, V. (2011). Effect of eccentric exercise velocity on akt/mtor/p70(s6k) signaling in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 36(2), 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Roschel, H., Ugrinowistch, C., Santos, A. R., Barbosa, W. P., Miyabara, E. H., Tricoli, V., & Aoki, M. S. (2018). Effect of eccentric action velocity on expression of genes related to myostatin signaling pathway in human skeletal muscle. Biology of Sport, 35(2), 111–119.

    PubMed  Google Scholar 

  • Saric, J., Lisica, D., Orlic, I., Grgic, J., Krieger, J. W., Vuk, S., & Schoenfeld, B. J. (2019). Resistance training frequencies of 3 and 6 times per week produce similar muscular adaptations in resistance-trained men. Journal of Strength and Conditioning Research, 33(Suppl 1), S122–S129.

    Article  PubMed  Google Scholar 

  • Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of Strength and Conditioning Research, 24(10), 2857–2872.

    Article  PubMed  Google Scholar 

  • Schoenfeld, B. J., Contreras, B., Willardson, J. M., Fontana, F., & Tiryaki-Sonmez, G. (2014). Muscle activation during low- versus high-load resistance training in well-trained men. European Journal of Applied Physiology, 114(12), 2491–2497.

    Article  PubMed  Google Scholar 

  • Schoenfeld, B. J., Grgic, J., & Krieger, J. (2019). How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency. Journal of Sports Science, 37(11), 1286–1295.

    Article  Google Scholar 

  • Schoenfeld, B. J., Ogborn, D. I., Vigotsky, A. D., Franchi, M. V., & Krieger, J. W. (2017). Hypertrophic effects of concentric vs. eccentric muscle actions: a systematic review and meta-analysis. Journal of Strength and Conditioning Research, 31(9), 2599–2608.

    Article  PubMed  Google Scholar 

  • Schoenfeld, B. J., Peterson, M. D., Ogborn, D., Contreras, B., & Sonmez, G. T. (2015a). Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. Journal of Strength and Conditioning Research, 29(10), 2954–2963.

    Article  PubMed  Google Scholar 

  • Schoenfeld, B. J., Pope, Z. K., Benik, F. M., Hester, G. M., Sellers, J., Nooner, J. L., Schnaiter, J. A., Bond-Williams, K. E., Carter, A. S., Ross, C. L., Just, B. L., Henselmans, M., & Krieger, J. W. (2016). Longer inter-set rest periods enhance muscle strength and hypertrophy in resistance-trained men. Journal of Strength and Conditioning Research, 30(7), 1805–1812.

    Article  PubMed  Google Scholar 

  • Schoenfeld, B. J., Ratamess, N. A., Peterson, M. D., Contreras, B., & Tiryaki-Sonmez, G. (2015b). Influence of resistance training frequency on muscular adaptations in well-trained men. Journal of Strength and Conditioning Research, 29(7), 1821–1829.

    Article  PubMed  Google Scholar 

  • Schroeder, E. T., Villanueva, M., West, D. D., & Phillips, S. M. (2013). Are acute post-resistance exercise increases in testosterone, growth hormone, and IGF‑1 necessary to stimulate skeletal muscle anabolism and hypertrophy? Medicine and Science in Sports and Exercise, 45(11), 2044–2051.

    Article  PubMed  Google Scholar 

  • Senna, G., Salles, B. F., Prestes, J., Mello, R. A., & Roberto, S. (2009). Influence of two different rest interval lengths in resistance training sessions for upper and lower body. Journal of Sports Science & Medicine, 8(2), 197–202.

    Google Scholar 

  • Senna, G., Willardson, J. M., de Salles, B. F., Scudese, E., Carneiro, F., Palma, A., & Simão, R. (2011). The effect of rest interval length on multi and single-joint exercise performance and perceived exertion. Journal of Strength and Conditioning Research, 25(11), 3157–3162.

    Article  PubMed  Google Scholar 

  • Shavlakadze, T., Chai, J., Maley, K., Cozens, G., Grounds, G., Winn, N., Rosenthal, N., & Grounds, M. D. (2010). A growth stimulus is needed for IGF‑1 to induce skeletal muscle hypertrophy in vivo. Journal of Cell Science, 123(6), 960–971.

    Article  CAS  PubMed  Google Scholar 

  • Shepstone, T. N., Tang, J. E., Dallaire, S., Schuenke, M. D., Staron, R. S., & Phillips, S. M. (2005). Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. Journal of Applied Physiology, 98(5), 1768–1776.

    Article  PubMed  Google Scholar 

  • Silva, J. S., Koch, A. J., Medeiros, J. C., Silva, M. L., & Machado, M. (2014). Resistance exercise load reduction and exercise-induced micro-damage. Journal of Human Sport & Exercise, 9(1), 1–6.

    Article  Google Scholar 

  • Spangenburg, E. E., Le Roith, D., Ward, C. W., & Bodine, S. C. (2008). A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. Journal of Physiology, 586(1), 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Spineti, J., Figueiredo, T., Miranda, H., de Salles, B. F., Oliveira, L., & Simão, R. (2014). The effects of exercise order and periodized resistance training on maximum strength and muscle thickness. International SportMed Journal, 14(4), 374–390.

    Google Scholar 

  • Spineti, J., de Salles, B. F., Rhea, M. R., Lavigne, D., Matta, T., Miranda, F., Fernandes, L., & Simão, R. (2010). Influence of exercise order on maximum strength and muscle volume in nonlinear periodized resistance training. Journal of Strength and Conditioning Research, 24(11), 2962–2969.

    Article  PubMed  Google Scholar 

  • Starkey, D. B., Pollock, M. L., Ishida, Y., Welsch, M. A., Brechue, W. F., Graves, J. E., & Feigenbaum, M. S. (1996). Effect of resistance training volume on strength and muscle thickness. Medicine and Science in Sports and Exercise, 28(10), 1311–1320.

    Article  CAS  PubMed  Google Scholar 

  • Tannerstedt, J., Apro, W., & Blomstrand, E. (2009). Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. Journal of Applied Physiology, 106(4), 1412–1418.

    Article  CAS  PubMed  Google Scholar 

  • Terzis, G., Georgiadis, G., Stratakos, G., Vogiatzis, I., Kavouras, S., Manta, P., Mascher, H., & Blomstrand, E. (2008). Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. European Journal of Applied Physiology, 102(2), 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Terzis, G., Spengos, K., Mascher, H., Georgiadis, G., Manta, P., & Blomstrand, E. (2010). The degree of p70 S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. European Journal of Applied Physiology, 110(4), 835–843.

    Article  CAS  PubMed  Google Scholar 

  • Ulbricht, A., Eppler, F. J., Tapia, V. E., van der Ven, P. F., Hampe, N., Hersch, N., Vakeel, P., Stadel, D., Haas, A., Saftig, P., Behrends, C., Fürst, D. O., Volkmer, R., Hoffmann, B., Kolanus, W., & Höhfeld, J. (2013). Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Current Biology, 23(5), 430–435.

    Article  CAS  PubMed  Google Scholar 

  • Ulbricht, A., Gehlert, S., Leciejewski, B., Schiffer, T., Bloch, W., & Höhfeld, J. (2015). Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy, 11(3), 538–546.

    Article  PubMed  PubMed Central  Google Scholar 

  • West, D. W., & Phillips, S. M. (2012). Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. European Journal of Applied Physiology, 112(7), 2693–2702.

    Article  CAS  PubMed  Google Scholar 

  • West, D. W., Baehr, L. M., Marcotte, G. R., Chason, C. M., Tolento, L., Gomes, A. V., Bodine, S. C., & Baar, K. (2016). Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle. Journal of Physiology, 594(2), 453–468.

    Article  CAS  PubMed  Google Scholar 

  • West, D. W., Burd, N. A., Tang, J. E., Moore, D. R., Staples, A. W., Holwerda, A. M., Baker, S. K., & Phillips, S. M. (2010). Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. Journal of Applied Physiology, 108(1), 60–67.

    Article  PubMed  Google Scholar 

  • West, D. W., Kujbida, G. W., Moore, D. R., Atherton, P., Burd, N. A., Padzik, J. P., De Lisio, M., Tang, J. E., Parise, G., Rennie, M. J., Baker, S. K., & Phillips, S. M. (2009). Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. Journal of Physiology, 587(21), 5239–5247.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., & Rennie, M. J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. Journal of Physiology, 586(15), 3701–3717.

    Article  CAS  PubMed  Google Scholar 

  • Willardson, J. M., & Burkett, L. N. (2006). The effect of rest interval length on bench press performance with heavy vs. light loads. Journal of Strength and Conditioning Research, 20(2), 396–399.

    PubMed  Google Scholar 

  • Willardson, J. M., Kattenbraker, M. S., Khairallah, M., & Fontana, F. E. (2010). Research note: effect of load reductions over consecutive sets on repetition performance. Journal of Strength and Conditioning Research, 24(3), 879–884.

    Article  PubMed  Google Scholar 

  • Witkowski, S., Lovering, R. M., & Spangenburg, E. E. (2010). High-frequency electrically stimulated skeletal muscle contractions increase p70s6k phosphorylation independent of known IGF‑I sensitive signaling pathways. FEBS Letters, 584(13), 2891–2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You, J. S., Lincoln, H. C., Kim, C. R., Frey, J. W., Goodman, C. A., Zhong, X. P., & Hornberger, T. A. (2014). The role of diacylglycerol kinase zeta and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. Journal of Biological Chemistry, 289(3), 1551–1563.

    Article  CAS  PubMed  Google Scholar 

  • Zou, K., Meador, B. M., Johnson, B., Huntsman, H. D., Mahmassani, Z., Valero, M. C., Huey, K. A., & Boppart, M. D. (2011). The alpha(7)beta(1)-integrin increases muscle hypertrophy following multiple bouts of eccentric exercise. Journal of Applied Physiology, 111(4), 1134–1141.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Terra.

Ethics declarations

Conflict of interest

V.H.F. Arantes, D. Paulucio da Silva, R.L. de Alvarenga, A. Terra, A. Koch, M. Machado, and F.A.M.S. Pompeu declare that they have no competing interests.

For the present contribution the authors did not perform any studies with human participants or animals. All studies performed were in accordance with ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arantes, V.H.F., da Silva, D.P., de Alvarenga, R.L. et al. Skeletal muscle hypertrophy: molecular and applied aspects of exercise physiology. Ger J Exerc Sport Res 50, 195–207 (2020). https://doi.org/10.1007/s12662-020-00652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12662-020-00652-z

Keywords

Schlüsselwörter

Navigation