Skip to main content
Log in

Biomass-Derived Carbohydrates to 5-Ethoxymethylfurfural

  • Review article
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The synthesis of liquid fuel and fuel additives from abundant biomass substrates has acquired significant attention in recently. Among these value-added chemicals, 5-Ethoxymethylfurfural (5-EMF) is considered one of the most desirable gasoline alternatives because of its high stability, environmental friendliness, and high energy density of 8.7 kWhL−1. This 5-EMF could be directly produced from different biomass or biomass-derived substrates via etherification reactions in ethanol medium by straightforward synthetic methods using homogeneous catalysts and heterogeneous catalysts. In the current review, the role of different starting materials, homogeneous catalysts, and heterogeneous catalysts in the synthesis of 5-EMF is extensively discussed. Furthermore, the effect of different solvent system viz; single-phase, biphasic solvents, ionic liquids, and deep eutectic solvents (DES), on 5-EMF synthesis has also been discussed. The advantages and challenges of the chemocatalytic synthesis of EMF in different reaction systems are also discussed. We also tried to focus on the most economical way to produce EMF from HMF, and the mechanistic studies are summarized here along with catalyst deactivation data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

EMF:

5-Ethoxymethylfurfural

HMF:

5-Hydroxymethylfurfural

BMF:

5-Bromomethylfurfural

CMF:

5-Chloromethylfurfural

FDCA:

2, 5-Furan dicarboxylic acid (FDCA)

DMSO:

Dimethyl sulfoxide

EG:

Ethyl glucoside

EL:

Ethyl levulinate

EtOH:

Ethanol

GO:

Graphene oxide

GVL:

γ-Valerolactone

HPA:

Heteropoly acids

STA:

Silicotungstic acid

TPA:

Tungstophosphoric acid

ILs:

Ionic liquids

THF:

Tetrahydrofuran

References

  1. Iriondo, A., Mendiguren, A., Requies, J., Cambra, J.F.: 2, 5-DMF production through hydrogenation of real and synthetic 5-HMF over transition metal catalysts supported on carriers with different nature. Catal. Today 279(2), 286–295 (2017)

    Article  CAS  Google Scholar 

  2. Tour, J.M., Kittrell, C., Colvin, V.L.: Green carbon as a bridge to renewable energy. Nat. Mater. 9, 871–874 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Walter, L., Jürgen, K., Stefan, P., Heinz, P., Katharina, K.H.: Advanced biofuels and beyond: chemistry solutions for propulsion and production. Angew. Chem. Int. Ed. 56, 5412–5452 (2017)

    Article  Google Scholar 

  4. Bajwa, D.S., Peterson, T., Sharma, N., Shojaeiarani, J., Bajwa, S.G.: A review of densified solid biomass for energy production. Renew SustEnerg Rev. 96, 296–305 (2018)

    Article  Google Scholar 

  5. Van Putten, R.J., Van der Waal, J.C., De Jong, E.D., Rasrendra, C.B., Heeres, H.J., De Vries, J.G.: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013)

    Article  PubMed  Google Scholar 

  6. Bohre, A., Dutta, S., Saha, B., Abu-Omar, M.M.: Upgrading furfurals to drop-in biofuels: an overview. ACS Sustainable Chem. Eng. 3, 1263–1277 (2015)

    Article  CAS  Google Scholar 

  7. Lázló, M., Edity, C., Áron, N.: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118, 505–613 (2018)

    Article  Google Scholar 

  8. Zakrzewska, M.E., Bogel-Lukasik, E., Bogel-Lukasik, R.: Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem. Rev. 111, 397–417 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Gallezot, P.: Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41, 1538–1558 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Corma, A., Iborra, S., Velty, A.: Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Bozell, J.J., Petersen, G.R.: Technology development for the production of bio-based products from biorefinery carbohydrates-the US Department of Energy’s “top 10” revisited. Green Chem. 12, 539–554 (2010)

    Article  CAS  Google Scholar 

  12. Hoang, A.T., Pandey, A., Huang, Z., Luque, R., Ng, K.H., Papadopoulos, A.M., Chen, W.H., Rajamohan, S., Hadiyanto, H., Nguyen, X.P., Pham, V.V.: Catalyst-based synthesis of 2,5-dimethylfuran from carbohydrates as a sustainable biofuel production route. ACS Sustainable Chem. Eng. 10(10), 3079–3115 (2022)

    Article  CAS  Google Scholar 

  13. Xia, H., Xu, S., Hu, H., An, J., Li, C.: Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Adv. 8, 30875–30886 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao, K., Zhu, Y., Fang, Z., Kozinski, J.A., Butler, I.S., Xu, L., Song, H., Wei, X.: Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chem. 20, 3657–3682 (2018)

    Article  Google Scholar 

  15. Corma, A., De la Torre, O., Renz, M.: Production of high-quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy Environ. Sci. 5, 6328–6344 (2012)

    Article  CAS  Google Scholar 

  16. Feng, J., Li, M., Meng, X.: Green oxidation of cyclohexanone to adipic acid over phosphotungstic acid encapsulated in UiO-66. Catal. Lett. 149, 1504–1512 (2019)

    Article  CAS  Google Scholar 

  17. Corma, A., de la Torre, O., Renz, M.: High-quality diesel from hexose- and pentose-derived biomass platform molecules. Chemsuschem 4, 1574–1577 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. Huber, G.W., Chheda, J.N., Barrett, C.J., Dumesic, J.A.: Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Shen, W., Tompsett, G.A., Hammond, K.D., Xing, R., Dogan, F., Grey, C.P.: Liquid phase aldol condensation reactions with MgO–ZrO2 and shape-selective nitrogen-substituted NaY. Appl. Catal. A: Gen. 392, 57–68 (2011)

    Article  CAS  Google Scholar 

  20. West, R.M., Liu, Z.Y., Peter, M., Gärtner, C.A., Dumesic, J.A.: Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. J. Mol. Catal. A Chem. 296, 18–27 (2008)

    Article  CAS  Google Scholar 

  21. Yang, J., Li, N., Li, G., Wang, W., Wang, A., Wang, X.: Solvent-Free Synthesis of C10 and C11 Branched Alkanes from Furfural and Methyl Isobutyl Ketone. Chemsuschem 6, 1149–1152 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Galkin, K.I., Ananikov, V.P.: When will 5-hydroxymethylfurfural, the “Sleeping Giant” of sustainable chemistry, awaken? Chemsuschem 12(13), 2976–2982 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Mascal, M., Nikitin, E.B.: Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. Int. Ed. 47(41), 7924–7926 (2008)

    Article  CAS  Google Scholar 

  24. Jiping, M.A., Weiqiang, Y.U., Wang, M., Xiuquan, J.I.A., Fang, L.U., Jie, X.U.: Advances in selective catalytic transformation of ployols to value-added chemicals. Chinese J. Catal. 34(3), 492–507 (2013)

    Article  Google Scholar 

  25. Climent, M.J., Corma, A., Iborra, S.: Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 16, 516–547 (2014)

    Article  CAS  Google Scholar 

  26. Liu, B., Zhang, Z.H.: One-pot conversion of carbohydrates into furan derivatives via furfural and 5-hydroxylmethylfurfural as intermediates. Chemsuschem 9, 2015–2036 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. De Jong, E., Vijlbrief, T., Hijkoop, R., Gruter, G.J.M., Van der Waal, J.C.: Promising results with YXY Diesel components in an ESC test cycle using a PACCAR Diesel engine. Biomass Bioenerg. 36, 151–159 (2012)

    Article  Google Scholar 

  28. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., Granados, M.L.: Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9, 1144–1189 (2016)

    Article  CAS  Google Scholar 

  29. Hu, H.L., Hu, D.X., Jin, H.T., Zhang, P.L., Li, G.Z., Zhou, H., Yang, Y., Chen, C.L., Zhang, J., Wang, L.: Efficient production of furanic diether in a continuous fixed bed reactor. ChemCatChem 11, 2179–2186 (2019)

    Article  CAS  Google Scholar 

  30. Viil, I., Bredihhin, A., Mäeorgb, U., Vares, L.: Preparation of potential biofuel 5-ethoxymethylfurfural and other 5-alkoxymethylfurfurals in the presence of oil shale ash. RSC Adv. 4(11), 5689–5693 (2014)

    Article  ADS  CAS  Google Scholar 

  31. Wang, H., Deng, T., Wang, Y., Qi, Y., Hou, X., Zhu, Y.: Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural. Bioresour. Technol. 136, 394–400 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. Yuan, Z.L., Zhang, Z.H., Zheng, J.D., Lin, J.T.: Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates. Fuel 150, 236–242 (2015). https://doi.org/10.1016/j.fuel.2015.02.020

    Article  CAS  Google Scholar 

  33. Liu, X.F., Li, H., Pan, H., Zhang, H., Li, H., Yang, S.: Efficient catalytic upgradation of bio-based furfuryl alcohol to ethyl levulinate using mesoporous acidic MIL-101(Cr). ACS Omega 4(5), 8390–8399 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, B., Zhang, Z.H.: One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl d-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst. RSC Adv. 30, 12313–12319 (2013)

    Article  ADS  Google Scholar 

  35. Vanderhaegen, B., Neven, H., Coghe, S., Verstrepen, K.J., Verachtert, H., Derdelinckx, G.: Evolution of chemical and sensory properties during aging of top-fermented beer. J. Agri. Food Chem. 51(23), 6782–6790 (2003)

    Article  CAS  Google Scholar 

  36. Câmara, J.S., Alves, M.A., Marques, J.C.: Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta 563, 188–197 (2006)

    Article  Google Scholar 

  37. Zhang, H., Li, H., Hu, Y., Rao, K.T.V., Xu, C., Yang, S.: Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts. Renew Sust. Energ Rev. 114, 109296 (2019)

    Article  CAS  Google Scholar 

  38. Antunes, M.M., Russo, P.A., Wiper, P.V., Veiga, J.M., Pillinger, M., Mafra, L.: Sulfonated graphene oxide as effective catalyst for conversion of 5(hydroxymethyl)-2-furfural into biofuels. Chemsuschem 7(3), 804–812 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Yanowitz, J., Ratcliff, M. A., McCormick, R. L., Taylor, J. D., and Murphy, M. J.: Compendium of Experimental Cetane Numbers. https://doi.org/10.2172/1150177

  40. Gruter, G. J. M., Dautzenberg, F.: Method for the synthesis of 5-hydroxymethylfurfural ethers and their use, US20110082304A1

  41. Omidvarborna, H., Kumar, A., Kim, D.S.: Characterization of particulate matter emitted from transit buses fuelled with B20 in idle modes. J. Environ. Chem. Eng. 2, 2335–2342 (2014)

    Article  CAS  Google Scholar 

  42. Wang, Z.W., Li, H., Fang, C.J., Zhao, W.F., Yang, T.T., Yang, S.: Simply assembly of acidic nanospheres for efficient production of 5-ethoxymethylfurfural from 5-hydromethylfurfural and fructose. Energy Technol. 5, 2046–2054 (2017)

    Article  CAS  Google Scholar 

  43. Ras, E.J., Maisuls, S., Haesakkers, P., Gruter, G.J., Rothenberg, G.: Selective hydrogenation of 5-ethoxymethylfurfural over alumina-supported heterogeneous catalysts. Adv. Synth. Catal. 351, 3175–3185 (2009)

    Article  CAS  Google Scholar 

  44. Derya, U., Hilmioglu, N.D.: Synthesis of ethyl levulinate as a fuel bioadditive by a novel catalytically active pervaporation membrane. Energy Fuels 30(4), 2997–3003 (2016)

    Article  Google Scholar 

  45. Leibig, C., Mullen, B., Mullen, T., Rieth, L., BadarinarayanaRieth, L., Badarinarayana, V.: Cellulosic-derived levulinic ketal esters: a new building block. Renew. Sust. Polym. 7, 111–116 (2011)

    Article  Google Scholar 

  46. Olson, E.S., Kjelden, M.R., Schlag, A.J., Sharma, R.K.: Levulinate Esters from Biomass Wastes. ACS Symp. Ser. Chem. Mater. Renew. Resourc. 784, 51–63 (2001)

    CAS  Google Scholar 

  47. Démolis, A., Essayem, N., Rataboul, F.: Synthesis and applications of alkyl levulinates. ACS Sust. Chem. Eng. 2, 1338–1352 (2014)

    Article  Google Scholar 

  48. Mascal, M., Nikitin, E.B.: Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. Chemsuschem 2, 859–861 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. Lanzafame, P., Temi, D.M., Perathoner, S., Centi, G., Macario, A., Aloise, A., Giordano, G.: Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catal. Today 175, 435–441 (2011)

    Article  CAS  Google Scholar 

  50. Liu, A., Liu, B., Wang, Y., Ren, R.S., Zhang, Z.: Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay. Fuel 117, 68–73 (2014)

    Article  CAS  Google Scholar 

  51. Che, P., Lu, F., Zhang, J., Huang, Y., Nie, Z., Gao, J., Xu, J.: Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production. Bioresour. Technol. 119, 433–436 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. Sanborn, A.J.: Processes for the preparation and purification of hydroxymethyl furaldehyde and derivatives, AU2011205117B2

  53. Gruter, G.J.M., Dautzenberg, F.: Method for the synthesis of 5-alkoxymethyl furfural ethers and their use. WO2007104514A2

  54. Gruter, G.J.M.: Hydroxymethylfurfural ethers from sugars or HMF and branched alcohols. US20100218416A1

  55. Gruter, G.J.M., Manzer, L.E.: Hydroxymethylfurfural ethers with mixed alcohols. WO2009030508A4

  56. Bicker, M., Kaiser, D., Ott, L., Vogel, H.: Dehydration of D-fructose to hydroxymethylfurfural in sub and supercritical fluids. J. Supercrit. Fluid. 36, 118–126 (2005)

    Article  CAS  Google Scholar 

  57. Hafizi, H., Walker, G., Collins, M.N.: Efficient production of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and carbohydrates over lewis/brønsted hybrid magnetic dendritic fibrous silica core-shell catalyst. Renew. Energy 183, 459–471 (2022)

    Article  CAS  Google Scholar 

  58. Yunfei, H., Zhang, L., Liu, Y., Yi, S., Yu, H., Zhu, Y., Sun, R.: Sulfated complex metal oxides solid acids with dual Brønsted-Lewis acidic property for production of 5-ethoxymethylfurfural from biomass-derived carbohydrates. Chem. Eng. J. 429, 132279 (2022)

    Article  Google Scholar 

  59. Zhang, L., Liu, Y., Liu, C., Yi, S., Sun, W., He, J.: Catalytic ethanolysis of fructan-rich and starchy expired food into biofuel 5-ethoxymethylfurfural. Bio. Resources. 16(3), 6186–6200 (2021)

    CAS  Google Scholar 

  60. Zhang, L., Zhu, Y., Tian, L., He, Y., Wang, H., Deng, F.: One-pot alcoholysis of carbohydrates to biofuel 5-ethoxymethylfufural and 5-methoxymethylfufural via a sulfonic porous polymer. Fuel Process. Technol. 193, 39–47 (2019)

    Article  CAS  Google Scholar 

  61. Tian, L., Zhang, L., Liu, Y., He, Y., Zhu, Y., Sun, R., Yi, S., Xiang, J.: Clean production of ethyl levulinate from kitchen waste. J. Clean. Prod. 268, 122296 (2020)

    Article  CAS  Google Scholar 

  62. Balakrishnan, M., Sacia, E.R., Bell, A.T.: Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem. 14(6), 1626–1634 (2012)

    Article  CAS  Google Scholar 

  63. Chen, B., Xu, G., Chang, C., Zheng, Z., Wang, D., Zhang, S.: Efficient one-pot production of biofuel 5-ethoxymethylfurfural from corn stover: optimization and kinetics. Energy Fuels 33(5), 4310–4321 (2019)

    Article  CAS  Google Scholar 

  64. Flannelly, T., Dooley, S., Leahy, J.J.: Reaction pathway analysis of ethyl levulinate and 5-ethoxymethylfurfural from d-fructose acid hydrolysis in ethanol. Energy Fuels 29(11), 7554–7565 (2015)

    Article  CAS  Google Scholar 

  65. Xu, G., Chen, B., Zheng, Z., Li, K., Tao, H.: One-pot ethanolysis of carbohydrates to promising biofuels: 5-ethoxymethylfurfural and ethyl levulinate. Asia-Pacific J Chem Eng. 12(4), 527–535 (2017)

    Article  CAS  Google Scholar 

  66. Liu, J., Tang, Y., Wu, K., Bi, C., Cui, Q.: Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol. Carbohydr. Res. 350, 20–24 (2012)

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, X., Zhang, Z., Liu, B., Zhou, Q., Wang, S., Deng, K.: Catalytic conversion of fructose into furans using FeCl3 as catalyst. J. Ind. Eng. Che. 20(2), 644–649 (2014)

    Article  CAS  Google Scholar 

  68. Yang, Y., Hu, C., Abu-Omar, M.M.: Conversion of glucose into furans in the presence of AlCl3 in an ethanol-water solvent system. Bioresour. Technol. 116, 190–194 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Liu, B., Zhang, Z., Huang, K., Fang, Z.: Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl3. Fuel 113, 625–631 (2013)

    Article  CAS  Google Scholar 

  70. Jia, X., Ma, J., Che, P., Lu, F., Miao, H., Gao, J.: Direct conversion of fructose-based carbohydrates to 5-ethoxymethylfurfural catalyzed by AlCl3·6H2O/BF3·(Et)2O in ethanol. J. Energy Chem. 22, 93–97 (2013)

    Article  CAS  Google Scholar 

  71. Pereira, J.G., Sousa, S.C.A., Fernandes, A.C.: Direct conversion of carbohydrates into 5-ethoxymethylfurfural (EMF) and 5-hydroxymethylfurfural (HMF) catalyzed by oxomolybdenum complexes. Chem. Select. 2(16), 4516–4521 (2017)

    CAS  Google Scholar 

  72. Guo, H., Qi, X., Hiraga, Y., Aida, T.M., Smith, R.L.: Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst. Chem. Eng. J. 314, 508–514 (2017)

    Article  CAS  Google Scholar 

  73. Mori, Y., Katayama, Y., Shikata, T., Kasuya, N.: Synthesis of 5-ethoxymethylfurfural from saccharides using combined metal–surfactant catalyst in ethanol/dimethyl sulfoxide. Res. Chem. Intermed. 46, 609–620 (2020)

    Article  CAS  Google Scholar 

  74. Jitian, L., Yu, T., Xu, F.: Efficient conversion of carbohydrates to ethoxymethylfurfural and levulinic acid ethyl ester under the catalysis of recyclable DMSO/Brønsted acids. Starch 67(9–10), 765–771 (2015)

    Google Scholar 

  75. Yu, X., Gao, X., Tao, R., Peng, L.: Insights into the metal salt catalyzed 5-ethoxymethylfurfural synthesis from carbohydrates. Catalysts 7(6), 182 (2017)

    Article  Google Scholar 

  76. Heravi, M.M., Faghihi, Z.: Applications of heteropoly acids in multi-component reactions. J. Iran. Chem. Soc. 11, 209–224 (2014)

    Article  CAS  Google Scholar 

  77. Okuhara, T., Watanabe, H., Nishimura, T., Inumaru, K., Misono, M.: Microstructure of Cesium hydrogen salts of 12-tungstophosphoric acid relevant to novel acid catalysis. Chem. Mater. 12, 2230–2238 (2000)

    Article  CAS  Google Scholar 

  78. Yang, Y., Abu-Omar, M.M., Hu, C.: Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate. Appl. Energy 99, 80–84 (2012)

    Article  ADS  CAS  Google Scholar 

  79. Bing, L., Zhang, Z., Deng, K.: Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst. Ind. Eng. Chem. Res. 51(47), 15331–15336 (2012)

    Article  CAS  Google Scholar 

  80. Wang, S., Zhang, Z., Liu, B., Li, J.: Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal. Sci. Technol. 3, 2104–2112 (2013)

    Article  CAS  Google Scholar 

  81. Ren, Y., Liu, B., Zhang, Z., Lin, J.: Silver-exchanged heteropolyacid catalyst (Ag1H2PW): an efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 4-hydroxymethylfurfural and fructose. J. Ind. Eng. Chem. 221, 1127–1131 (2014)

    Google Scholar 

  82. Liu, A., Zhang, Z., Fang, Z., Liu, B., Huangn, K.: Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid. J. Ind. Eng. Chem. 20(4), 1977–1984 (2014)

    Article  ADS  CAS  Google Scholar 

  83. Raveendra, G., Rajasekhar, A., Srinivas, M., Sai Prasad, P.S., Linhaigh, N.: Selective etherification of hydroxymethylfurfural to biofuel additives over Cs containing silicotungstic acid catalysts. ApplCatal A: Gen. 520, 105–113 (2016)

    CAS  Google Scholar 

  84. Kumari, P.K., Rao, B.S., Padmakar, D., Pasha, N., Lingaiah, N.: Lewis acidity induced heteropolytungustate catalysts for the synthesis of 5-ethoxymethyl furfural from fructose and 5-hydroxymethylfurfural. Mol Catal. 448, 108–115 (2018)

    Article  CAS  Google Scholar 

  85. Li, H., Govind, K.S., Kotni, R., Shunmugavel, S., Riisager, A., Yang, S.: Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–basebifunctional hybrid nanospheres. Energy Convers Manag. 88, 1245–1251 (2014)

    Article  CAS  Google Scholar 

  86. Kumari, P.K., Rao, B.S., Mallesh, D., Lingaiah, N.: Niobium exchanged tungstophosphoric acid supported on titania catalysts for selective synthesis of 5-ethoxymethylfurfural from fructose. Mol. Catal. 508, 111607 (2021)

    Article  CAS  Google Scholar 

  87. Srinivasa Rao, B.S., Lakshmi, D.D., Kumari, P.K., Rajitha, P., Lingaiah, N.: Dehydrative etherification of carbohydrates to 5-ethoxymethylfurfural over SBA-15-supported Sn-modified heteropolysilicate catalysts. Sust. Energy. Fuels. 4, 3428–3437 (2020)

    Article  CAS  Google Scholar 

  88. Kumari, P.K., Rao, B.S., Lakshmi, D.D., Paramesh, N.R.S., Sumana, C., Lingaiah, N.: Tungstophosphoric acid supported on mesoporouusniobiumoxophosphate: an efficient solid acid catalyst for etherification of 5-hydroxymethylfurfural to 5-ethoxymethylfurfural. Catal. Today 325, 53–60 (2019)

    Article  CAS  Google Scholar 

  89. Wang, Z., Chen, Q.: Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinatecatalyzed by MOF-based heteropolyacid materials. Green Chem. 18, 5884–5889 (2016)

    Article  CAS  Google Scholar 

  90. Alam, M.I., De, S., Dutta, S., Saha, B.: Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel. RSC Adv. 2(17), 6890–6896 (2012)

    Article  ADS  Google Scholar 

  91. Saravanamurugan, S., Riisager, A.: Solid acid catalysed formation of ethyl levulinateand ethyl glucopyranoside from mono- and disaccharides. Catal. Commun. 17, 71–75 (2012)

    Article  CAS  Google Scholar 

  92. Neves, P., Antunes, M.M., Russo, P.A., Abrantes, J.P., Lima, S., Fernandes, A., Pillinger, M., Rocha, S.M., Ribeiro, M.F., Valente, A.A.: Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts. Green Chem. 15, 3367–3376 (2013)

    Article  CAS  Google Scholar 

  93. Lew, C.M., Rajabbeigi, N., Tsapatsis, M.: One-pot synthesis of 5-(Ethoxymethyl) furfural from glucose using Sn-BEA and Amberlyst catalysts. IndEngChem Res. 51(14), 5364–5366 (2012)

    CAS  Google Scholar 

  94. Li, H., Saravanamurugan, S., Yang, S., Riisager, A.: Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts. Green Chem. 18(3), 726–734 (2016)

    Article  CAS  Google Scholar 

  95. Lewis, J.D., Vyver, S.V., Crisci, A.J.: A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using lewis acid zeolites. Chemsuschem 7(8), 2255–2265 (2014)

    Article  CAS  PubMed  Google Scholar 

  96. Barbera, K., Lanzafame, P., Perathoner, S.: HMF etherification using NH4-exchanged zeolites. New J. Chem. 40(5), 4300–4306 (2016)

    Article  CAS  Google Scholar 

  97. Bai, Y.Y., Wei, L., Yang, M.F.: Three-step cascade over a single catalyst: synthesis of 5-(ethoxymethyl)furfural from glucose over a hierarchical lamellar multi-functional zeolite catalyst. J. Mater. Chem. A. 6(17), 7693–7705 (2018)

    Article  CAS  Google Scholar 

  98. Chen, B.L., Xu, G., Zheng, Z., Wang, D., Zou, C., Chang, C.: Efficient conversion of corn stover into 5-ethoxymethylfurfural catalyzed by zeolite USY in ethanol/THF medium. Ind. Crop Prod. 129, 503–511 (2019)

    Article  CAS  Google Scholar 

  99. Xu, G., Zhang, S., Zheng, Z., Wang, C., Wang, S., Tao, H.: Direct conversion of fructose to 5-ethoxymethyl-furfural catalyzed by ultra-stable Y zeolite. Bioresourc. 15(2), 3621–3635 (2020)

    Article  CAS  Google Scholar 

  100. Allen, M.C., Hoffman, A.J., Liu, T.W., Webber, M.S., Hibbitts, D., Schwartz, T.J.: Highly selective cross-etherification of 5-hydroxymethylfurfural with ethanol. ACS Catal. 10(12), 6771–6785 (2020)

    Article  CAS  Google Scholar 

  101. Hu, D., Hualei, H., Jin, H., Zhang, P., Hu, Y., Ying, S., Li, X., Yang, Y., Zhangm, J., Wang, L.: Building hierarchical zeolite structure by post-synthesis treatment to promote the conversion of furanic molecules into biofuels. ApplCatal A Gen. 590, 117338 (2020)

    Article  CAS  Google Scholar 

  102. Zheng, Z., Wang, C., Chen, Y., Wang, S., Guo, Q., Chang, C., Tao, H., Xu, G.: One-pot efficient conversion of glucose into biofuel 5-ethoxymethylfurfural catalyzed by zeolite solid catalyst. Biomass Conv. Biorefin. 13, 8927–8938 (2023)

    Article  CAS  Google Scholar 

  103. Liu, X., Wang, R.: Catalytic Upgrading of Bio renewables to Value-Added Products. Int. J. Chem. Eng. (2018). https://doi.org/10.1155/2018/2316939

    Article  Google Scholar 

  104. Wang, H., Deng, T., Wang, Y., Cui, X., Qi, Y., Mu, X., Hou, X., Zhu, Y.: Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem. 15, 2379–2383 (2013)

    Article  CAS  Google Scholar 

  105. Liu, B., Zhang, Z.H., Huang, K.C.: Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose 20(4), 2081–2089 (2013)

    Article  CAS  Google Scholar 

  106. Margarida, M.A., Patrcia, A.R., Paul, V.W., Jacinto, M.V., Martyn, P., Lus, M., Dmitry, V.E., Nicola, P., Anabela, A.V.: Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels. Chemsuschem 7, 804–812 (2014)

    Article  Google Scholar 

  107. Zhang, Z.H., Wang, Y.M., Fang, Z.F., Liu, B.: Synthesis of 5-ethoxymethylfurfural from fructose and inulin catalyzed by a magnetically recoverable acid catalyst. ChemPlusChem 79(2), 233–240 (2014)

    Article  CAS  PubMed  Google Scholar 

  108. Li, H., Zhang, Q., Yang, S.: Catalytic cascade dehydration-etherification of fructose into 5-ethoxymethylfurfural with SO3H-functionalized polymers. Int. J. ChemEng. 2014, 481627 (2014)

    Google Scholar 

  109. Shanshan, Y., Jie, S., Bing, L., Zehui, Z.: Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates. J. Mater. Chem. A. 3, 4992–4999 (2015)

    Article  Google Scholar 

  110. Xiaofang, L., Hu, L., Hu, P., Heng, Z., Shan, H., Kaili, Y., Wei, X., Song, Y.: Efficient catalytic conversion of carbohydrates into 5-ethoxymethylfurfural over MIL-101-based sulfated porous coordination polymers. J. Energy Chem. 25(3), 523–530 (2016)

    Article  Google Scholar 

  111. Thombal, R.S., Jadhav, V.H.: Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids. Tetrahedron Lett. 57, 4398–4400 (2016)

    Article  CAS  Google Scholar 

  112. Junmei, W., Zehui, Z., Shiwei, J., Xizhou, S.: Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sufonic acid-functionalized mesoporous carbon catalyst. Fuel 192, 102–107 (2017)

    Article  Google Scholar 

  113. Yao, Y., Gu, A., Wang, Y., Wang, H.J., Li, W.: Magnetically-recoverable carbonaceous material: an efficient catalyst for the synthesis of 5-hydroxymethylfurfural and5-ethoxymethylfurfural from carbohydrates. Russ. J. Gen. Chem. 86(7), 1698–1704 (2016)

    Article  CAS  Google Scholar 

  114. Zhao, K., Liu, S., Li, K., Hu, Z., Yuan, Y., Yan, L.: Fabrication of −SO3H functionalized aromatic carbon microspheres directly from waste Camellia oleifera shells and their application on heterogeneous acid catalysis. Mol. Catal. 433, 193–201 (2017)

    Article  CAS  Google Scholar 

  115. Morales, G., Paniagua, M., Melero, J.A., Iglesias, J.: Efficient production of 5-ethoxymethylfurfural from fructose by sulfonic mesostructured silica using DMSO as co-solvent. Catal. Today 279(2), 305–316 (2017)

    Article  CAS  Google Scholar 

  116. Shinde, S., Rode, C.V.: Cascade reductive etherification of bio-derived aldehydes over Zr-based catalysts. Chemsuschem 10(20), 4090–4101 (2017)

    Article  CAS  PubMed  Google Scholar 

  117. Chen, T., Peng, L., Yu, X., He, L.: Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel 219, 344–352 (2018)

    Article  CAS  Google Scholar 

  118. Bai, Y., Su, S., Wang, S., Wang, B., Sun, R.C., Song, G., Xiao, L.P.: Catalytic conversion of carbohydrates into 5-ethoxymethylfurfural by a magnetic solid acid using γ-valerolactone as a co-solvent. Energy Technol. 6(10), 1951–1958 (2018)

    Article  CAS  Google Scholar 

  119. Zhang, J., Dong, K., Luo, W., Guan, H.: Catalytic upgrading of carbohydrates into 5-ethoxymethylfurfural using SO3H functionalized hyper-cross-linked polymer based carbonaceous materials. Fuel 234, 664–673 (2018)

    Article  CAS  Google Scholar 

  120. Dai, J., Liu, Z., Hu, Y., Liu, S., Chen, L., Qi, T., Yang, H., Zhu, L., Hu, C.: Adjusting the acidity of sulfonatedorganocatalyst for the one-pot production of 5-ethoxymethylfurfural from fructose. Catal. Sci. Technol. 9, 483–492 (2019)

    Article  CAS  Google Scholar 

  121. Kumar, A., Srivastava, R.: FeVO4 decorated –SO3H functionalized polyaniline for direct conversion of sucrose to 2, 5-diformylfuran & 5-ethoxymethylfurfural and selective oxidation reaction. Mol. Catal. 465, 68–79 (2019)

    Article  CAS  Google Scholar 

  122. Gupta, D., Saha, B.: Dual acidic titaniacarbocatalyst for cascade reaction of sugar to etherified fuel additives. Catal. Commun. 110, 46–50 (2018)

    Article  CAS  Google Scholar 

  123. Yan, Y., Guo, H., Li, K., Yan, L.: Fabrication of supported acid catalytic composite fibers by a simple and low-cost method and their application on the synthesis of liquid biofuel 5-ethoxymethylfurfural. Green Energy Environ. 7(1), 165–171 (2022)

    Article  CAS  Google Scholar 

  124. Chen, Y., Guan, W., Zhang, Y., Yan, C., Li, B., Wei, Y., Pan, J., Yan, Y.: One-pot synthesis of the biofuel 5-ethoxymethylfurfural from carbohydrates using a bifunctional catalyst prepared through a pickering HIPE template and pore-filled strategy. Energy Fuels 34(11), 14264–14274 (2020)

    Article  CAS  Google Scholar 

  125. Hafizi, H., Walker, G., Iqbal, J., Leahy, J.J., Collins, M.N.: Catalytic etherification of 5-hydroxymethylfurfural into 5-ethoxymethyfurfural over sulfated bimetallic SO42−/Al-Zr/KIT-6, a Lewis/Brønsted acid hybrid catalyst. MolCatal. 496, 111176 (2020)

    CAS  Google Scholar 

  126. Karnjanakom, S., Phanthong, P., Bayu, A., Maneechakr, P., Samart, C., Kongparakul, S., Guan, G.: facile in situ 5-EMF synthesis and extraction processes from catalytic conversion of sugar under sustainable long-life cycle. ACS Sust. Chem. Eng. 8(39), 14867–14876 (2020)

    Article  CAS  Google Scholar 

  127. Quereshi, S., Pant, K.K., Dutta, S., Naiya, T.K.: Unfolding the role of molybdenum disulfide as a catalyst to produce platform chemicals from biorenewable resources. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00888-7

    Article  Google Scholar 

  128. Xiang, Y., Wen, S., Tian, Y., Zhao, K., Guo, D., Cheng, F., Xu, Q., Xiang, X., Yin, D.: Efficient synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over sulfonated organic polymer catalyst. RSC Adv. 11, 3585–3595 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Manjunathan, P., Upare, P.P., Lee, M., Hwang, D.W.: One-pot fructose conversion into 5-ethoxymethylfurfural using a sulfonated hydrophobic mesoporous organic polymer as a highly active and stable heterogeneous catalyst. Catal. Sci. Technol. 11, 5816–5826 (2021)

    Article  CAS  Google Scholar 

  130. Wang, C., Li, K., Ji, P.: Using taurine to increase mesopores in Ce-based metal–organic framework for enhancing the production of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. J. Chem. Technol. Bio Technol. 96(1), 163–171 (2021)

    Article  CAS  Google Scholar 

  131. Guo, H., Higashiguchi, R., Abe, Y., Smith, R.L.: Effective conversion of fructose to 5-ethoxymethylfurfural with brønsted acid site (S/Cl)-functional carbon catalysts. J. Biores. Bioprod. 7(1), 33–42 (2022)

    CAS  Google Scholar 

  132. Xiang, Y., Zhao, K., Zhou, S., Zhao, W., Zeng, Z., Zhu, X., Liu, X.: Sulfonic acid covalently grafted halloysite nanotubes for highly efficient synthesis of biofuel 5-ethoxymethylfurfural. Sustain. Energy Fuels 6, 2368–2376 (2022)

    Article  CAS  Google Scholar 

  133. Zhang, L., Liu, Y., Suna, R., Simin, Y.: Sulfonic acid-functionalized PCP (Cr) catalysts with Cr3+ and –SO3H sites for 5-ethoxymethylfurfural production from glucose. RSC Adv. 11, 33969–33979 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bharath, G., Rambabu, K., Hai, A., Morajkar, P.P., Salkar, A.V., Hasan, S.W., Show, P.L., Banat, F.: Highly selective etherification of fructose and 5-hydroxymethylfurfural over a novel Pd-Ru/MXene catalyst for sustainable liquid fuel production. Int. J. Energy Res. 45(10), 14680–14691 (2021)

    Article  CAS  Google Scholar 

  135. Maneechakr, P., Karnjanakom, S.: Selective conversion of fructose into 5-ethoxymethylfurfural over green catalyst. Res. Chem. Intermed. 45, 743–756 (2019)

    Article  CAS  Google Scholar 

  136. Zhang, L., Tian, L., Xi, G., Sun, R., Zhao, X.: Catalytic Valorization of expired fructan-rich food into the biofuel 5-ethoxymethylfurfural via a restaurant food waste-derived carbonaceous solid acid. Waste Biomass Valoriz. 11, 6223–6233 (2020)

    Article  CAS  Google Scholar 

  137. Dias Castro, G.A., Fernandes, S.A.: One-pot tandem synthesis of 5-ethoxymethylfurfural as a potential biofuel. React. Chem. Eng. 8, 220–228 (2023)

    Article  Google Scholar 

  138. Duscopus, Z., Liscopus, F., Yangscopus, R., Cao, Q., Yang, D., Dai, J.: catalytic conversion of 5-hydroxymethylfurfural and fructose to 5-ethoxymethylfurfural over sulfonated biochar catalysts. Bull. Chem. React. Eng. Catal. 18(2), 256–267 (2023)

    Article  Google Scholar 

  139. Guo, H., Duereh, A., Hiraga, Y., Qi, X., Smith, R.L.: Mechanism of glucose conversion into 5-ethoxymethylfurfural in ethanol with hydrogen sulfate ionic liquid additives and a lewis acid catalyst. Energy Fuels 32(8), 8411–8419 (2018)

    Article  CAS  Google Scholar 

  140. Xin, H., Zhang, T., Li, W., Su, M., Li, S., Shao, Q., Ma, L.L.: Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid. RSC Adv. 7, 41546–41551 (2017)

    Article  ADS  CAS  Google Scholar 

  141. Yu, X., Gao, X., Peng, L., He, L., Zhang, J.: Intensified 5-ethoxymethylfurfural production from biomass components over aluminum-based mixed-acid catalyst in co-solvent medium. Chem. Select. 3(47), 13391–13399 (2018)

    CAS  Google Scholar 

  142. Chen, Y., Peng, L., Zhang, J., He, L.: Synergy of Al2(SO4)3 and H3PO4 in co-solvents converts starch to 5-ethoxymethylfurfural. Catal. Commun. 137, 105947 (2020)

    Article  CAS  Google Scholar 

  143. Yang, F., Tang, J., Ou, R., Guo, Z., Gao, S., Wang, Y., Wang, X., Chen, L., Yuan, A.: Fully catalytic upgrading synthesis of 5-ethoxymethylfurfural from biomass-derived 5-Hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid. ApplCatal B Environ. 256, 117786 (2019)

    Article  CAS  Google Scholar 

  144. Diniscopus, W.F., Helmiyati, H., Krisnandi, Y.K.: Cellulose and TiO2–ZrO2 nano composite as a catalyst for glucose conversion to 5-EMF. Bull Chem. React. EngCatal. 16(2), 320–330 (2021)

    Article  Google Scholar 

  145. Tang, X., Zuo, M., Li, Z., Liu, H., Xiong, C., Zeng, X.: Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. Chemsuschem 10(13), 2696–2706 (2017)

    Article  CAS  PubMed  Google Scholar 

  146. Zhong, R., Yu, F., Schutyser, W., Liao, Y., Clippel, F.D., Peng, L.: Acidic mesostructured silica-carbon nanocomposite catalysts for biofuels and chemicals synthesis from sugars in alcoholic solutions. Appl. Catal. B Environ. 206, 74–88 (2017)

    Article  CAS  Google Scholar 

  147. Bernardo, J.R., Conceição Oliveira, M., Fernandes, A.C.: HReO4 as highly efficient and selective catalyst for the conversion of carbohydrates into value added chemicals. Mol. Catal. 465, 87–94 (2019)

    Article  CAS  Google Scholar 

  148. Karnjanakom, S., Maneechakr, P.: Designs of linear-quadratic regression models for facile conversion of carbohydrate into high value (5-(ethoxymethyl) furan-2-carboxaldehyde) fuel chemical. Energy Convers Manag. 196, 410–417 (2019)

    Article  CAS  Google Scholar 

  149. De, S., Dutta, S., Saha, B.: One-pot conversions of lignocellulosic and algal biomass into liquid fuels. Chemsuschem 5(9), 1826–1833 (2012)

    Article  CAS  PubMed  Google Scholar 

  150. Kraus, G.A., Guney, T.A.: Direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids. Green Chem. 14(6), 1593–1596 (2012)

    Article  CAS  Google Scholar 

  151. Guo, H., Duereh, A., Hiraga, Y., Aida, T.M., Qi, X., Smith, R.L.: Perfect recycle and mechanistic role of hydrogen sulfate ionic liquids as additive in ethanol for efficient conversion of carbohydrates into 5-ethoxymethylfurfural. Chem. Eng. J. 323, 287–294 (2017)

    Article  CAS  Google Scholar 

  152. Satyanarayana, C.V., Srikant, D., Gurav, H.R.: Catalyst deactivation and regeneration. Indus. Catal. Process. Fine Spec. Chem. (2016). https://doi.org/10.1016/B978-0-12-801457-8.00005-7

    Article  Google Scholar 

  153. Li, H., Riisager, A., Saravanamurugan, S., Pandey, A., Sangwan, R.S., Yang, S., Luque, R.: Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal. 8(1), 148–187 (2018)

    Article  CAS  Google Scholar 

  154. Li, H., Fang, Z., Smith, R.L., Jr., Yang, S.: Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combus. Sci. 55, 98–194 (2016)

    Article  Google Scholar 

  155. Argyle, M.D., Bartholomew, C.H.: Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5, 145–269 (2015)

    Article  CAS  Google Scholar 

  156. Xu, Z., Yang, Y., Yan, P., Xia, Z., Liu, X., Zhang, Z.C.: Mechanistic understanding of human formation in the conversion of glucose and fructose to 5-hydroxymethylfurfural in [BMIM]Cl ionic liquid. RSC Adv. 10, 34732–34737 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Padovan, D., Tolborg, S., Botti, L., Taarning, E., Sádaba, I., Hammond, C.: Overcoming catalyst deactivation during the continuous conversion of sugars to chemicals: maximizing the performance of Sn-Beta with a little drop of water. React. Chem. Eng. 3, 155–163 (2018)

    Article  CAS  Google Scholar 

  158. Karnjanakom, S., Maneechakr, P., Samart, C., Guan, G.: A facile way for sugar transformation catalyzed by carbon-based Lewis-Brønsted solid acid. Molecular Catalysis. 479, 110632 (2019)

    Article  Google Scholar 

  159. Xin, Y., Peng, L., Gao, X., He, L., Chen, K.: One-step fabrication of carbonaceous solid acid derived from lignosulfonate for the synthesis of biobased furan derivatives. RSC Adv. 8, 15762–15772 (2018)

    Article  ADS  Google Scholar 

  160. Ordomsky, V.V., Sushkevich, V.L., Schouten, J.C., Van Der Schaaf, J., Nijhuis, T.A.: Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts. J. Catal. 300, 37–46 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the CSIR-IICT for their support in encouraging the research.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Raveendra.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this review paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raveendra, G., Sadanandam, G., Mitta, H. et al. Biomass-Derived Carbohydrates to 5-Ethoxymethylfurfural. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02451-1

Keywords

Navigation