Skip to main content
Log in

Phosphoric Acid Industry Waste Valorization Through Fabrication of Alkali-Activated Phosphorus Slag-Based Ceramic Membranes: Synthesis and Optimization for Dehydration of Ethanol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work proposes a promising alternative to the usual materials and methods of dense ceramic membrane synthesis, focusing on the green exploitation of phosphoric acid industry waste. Alkali-activated ceramic membranes (AACM) were fabricated using two simple steps: alkali-activation, and steam curing. The performance of slag as a cementitious material was studied in membrane fabrication using X-ray fluorescence (XRF), X-ray diffraction (XRD), and laser diffraction (LD). Also, the effect of various proportions of water to slag (W/S), alkalinity to slag (A/S), and hardening time on morphology and phase changes, contact angle, flexural strength, and the pervaporation performance of alkali-activated phosphorus slag (AAPS) membranes were investigated. Further analysis was conducted on the optimal membrane to characterize its topography and thermogravimetric properties. Calcium silicate hydrate (C-S-H) was identified as the main hydration product of AAPS. The optimal membrane exhibited pervaporation separation index (PSI), flux, and separation factor of 954.52, 3.61 kg/m2.h, and 264.41 in ethanol dehydration through pervaporation, respectively. This result was obtained without zeolite coating. So, the novel and sustainable application presented in this study can reduce the environmental pollution associated with phosphorus slag and highlights the circular economy in ceramic membrane synthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Stewart Slater, C., Savelski, Mariano J., Moroz, Timothy M., Michael, J.: Raymond, pervaporation as a green drying process for tetrahydrofuran recovery in pharmaceutical synthesis. Green. Chem. Lett. Rev. 5(1), 55–64 (2012). https://doi.org/10.1080/17518253.2011.578590

    Article  Google Scholar 

  2. Pabby, A.K., Rizvi, S.S.H., Requena, A.M.S.: Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications. Taylor & Francis, Milton Park (2008)

    Book  Google Scholar 

  3. Hofs, B., Ogier, J., Vries, D., Beerendonk, E.F., Cornelissen, E.R.: Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep. Purif. Technol. 79(3), 365–374 (2011). https://doi.org/10.1016/j.seppur.2011.03.025

    Article  Google Scholar 

  4. Chapman, P.D., Oliveira, T., Livingston, A.G., Li, K.: Membranes for the dehydration of solvents by pervaporation. J. Membr. Sci. 318(1–2), 5–37 (2008). https://doi.org/10.1016/j.memsci.2008.02.061

    Article  Google Scholar 

  5. Deepti, A., Sinha, P., Biswas, S., Sarkar, U., Bora, M.K.: Purkait, utilization of LD slag from steel industry for the preparation of MF membrane. J. Environ. Manage. 259, 110060 (2020). https://doi.org/10.1016/j.jenvman.2019.110060

    Article  Google Scholar 

  6. He, P.Y., Zhang, Y.J., Chen, H., Han, Z.C., Liu, L.C.: Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium(VI) separation from aqueous solution. J. Hazard. Mater. 392, 122359 (2020). https://doi.org/10.1016/j.jhazmat.2020.122359

    Article  Google Scholar 

  7. Luukkonen, T., Heponiemi, A., Runtti, H., Pesonen, J., Yliniemi, J., Lassi, U.: Application of alkali-activated materials for water and wastewater treatment: a review. Rev. Environ. Sci. BioTechnol. 18(2), 271–297 (2019). https://doi.org/10.1007/s11157-019-09494-0

    Article  Google Scholar 

  8. Peydayesh, M., Bagnani, M., Soon, W., Mezzenga, R.: Turning food protein waste into sustainable technologies. Chem. Rev. 123(5), 2112–2154 (2023). https://doi.org/10.1021/acs.chemrev.2c00236

    Article  Google Scholar 

  9. Peydayesh, M., Mezzenga, R.: Protein nanofibrils for next generation sustainable water purification. Nat. Commun. 12(1), 3248 (2021). https://doi.org/10.1038/s41467-021-23388-2

    Article  Google Scholar 

  10. Tsakiridis, P.E.: Aluminium salt slag characterization and utilization—a review. J. Hazard. Mater. (2012). https://doi.org/10.1016/j.jhazmat.2012.03.052

    Article  Google Scholar 

  11. Chen, Z., Xu, G., Du, H., Cui, H., Zhang, X., Zhan, X.: Realizable recycling of coal fly ash from solid waste for the fabrication of porous Al2TiO5-Mullite composite ceramic. Int. J. Appl. Ceram. Technol. 16(1), 50–58 (2019). https://doi.org/10.1111/ijac.13092

    Article  Google Scholar 

  12. Pacheco-Torgal, F., Labrincha, J.A., Leonelli, C., Palomo, A., Chindaprasirt, P.: Handbook of alkali-activated cements mortars and concretes. Elsevier, Amsterdam (2014)

    Google Scholar 

  13. Allahverdi, A., Maghsoodloorad, H.: Developing low-cost activators for alkali-activated phosphorus slag-based binders. J. Mater. Civ. (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001806

    Article  Google Scholar 

  14. Al-Fariss, F., Özbelge, H.Ö., El-Shall, H.S.H.: Process technology for phosphoric acid production in Saudi Arabia. J. King Saud Univ. Eng. Sci. 4(2), 239–254 (1992). https://doi.org/10.1016/S1018-3639(18)30567-1

    Article  Google Scholar 

  15. Criado, M., Ke, X., Provis, J.L., Bernal, S.A.: Alternative inorganic binders based on alkali-activated metallurgical slags. Elsevier, Amsterdam (2017)

    Book  Google Scholar 

  16. Provis, J.L., van Deventer, J.S.J.: Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer, Netherlands (2013)

    Google Scholar 

  17. Soleimani, M.A., Naghizadeh, R., Mirhabibi, A.R., Golestanifard, F.: The influence of phosphorus slag addition on microstructure and mechanical properties of metakaolin-based geopolymer pastes. Ceram. Silik. 57(1), 33–38 (2013)

    Google Scholar 

  18. Habert, G., d’Espinose de Lacaillerie, J.B., Roussel, N.: An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod. 19(11), 1229–1238 (2011). https://doi.org/10.1016/j.jclepro.2011.03.012

    Article  Google Scholar 

  19. Shilar, F.A., Ganachari, S.V., Patil, V.B., Almakayeel, N., Yunus Khan, T.M.: Development and optimization of an eco-friendly geopolymer brick production process for sustainable masonry construction. Case Stud. Constr. Mater. 18, e02133 (2023). https://doi.org/10.1016/j.cscm.2023.e02133

    Article  Google Scholar 

  20. T. Luukkonen, 2022 9 - Alkali-activated membranes and membrane supports. Woodhead Publishing Series in Civil and Structural Engineering. https://doi.org/10.1016/B978-0-323-88438-9.00012-0

  21. Mohammadi, F., Mohammadi, T.: Optimal conditions of porous ceramic membrane synthesis based on alkali activated blast furnace slag using Taguchi method. Ceram. 43(16), 14369–14379 (2017). https://doi.org/10.1016/j.ceramint.2017.07.197

    Article  Google Scholar 

  22. Azarshab, M., Mohammadi, F., Maghsoodloorad, H., Mohammadi, T.: Ceramic membrane synthesis based on alkali activated blast furnace slag for separation of water from ethanol. Ceram. 42(14), 15568–15574 (2016). https://doi.org/10.1016/j.ceramint.2016.07.005

    Article  Google Scholar 

  23. Provis, J.L.: Geopolymers and other alkali activated materials: why, how, and what? Mater. Struct. 47(1), 11–25 (2014). https://doi.org/10.1617/s11527-013-0211-5

    Article  Google Scholar 

  24. Liu, Y., Shi, C., Zhang, Z., Li, N.: An overview on the reuse of waste glasses in alkali-activated materials. Resour. Conserv. Recycl. 144, 297–309 (2019). https://doi.org/10.1016/j.resconrec.2019.02.007

    Article  Google Scholar 

  25. Ziegler, D., Formia, A., Tulliani, J.M., Palmero, P.: Environmentally-friendly dense and porous geopolymers using fly ash and rice husk ash as raw materials. Mater. 9(6), 466 (2016). https://doi.org/10.3390/ma9060466

    Article  Google Scholar 

  26. Awoyera, P., Adesina, A.: A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud. Constr. Mater. 11, e00268 (2019). https://doi.org/10.1016/j.cscm.2019.e00268

    Article  Google Scholar 

  27. Tayeb, A.M., Tony, M.A., Mansour, S.A.: Application of box-behnken factorial design for parameters optimization of basic dye removal using nano-hematite photo-Fenton tool. Appl Water Sci 8(5), 138 (2018). https://doi.org/10.1007/s13201-018-0783-x

    Article  Google Scholar 

  28. Isanejad, M., Mahdavi, H.R., Mohammadi, T.: Novel amine modification of ZIF-8 for improving simultaneous removal of cationic dyes from aqueous solutions using supported liquid membrane. J. Mol. Liq. 225, 800–809 (2017). https://doi.org/10.1016/j.molliq.2016.11.007

    Article  Google Scholar 

  29. Azizinamaghi, H., Mousavi, S.M.: Factorial experimental design for treatment of an industrial wastewater using micellar-enhanced ultrafiltration. Desalin. Water Treat. 57(12), 5416–5424 (2015). https://doi.org/10.1080/19443994.2015.1007086

    Article  Google Scholar 

  30. Arzani, M., Mahdavi, H., Bakhtiari, O., Mohammadi, T.: Preparation of mullite ceramic microfilter membranes using response surface methodology based on central composite design. Ceram. 42(7), 8155–8164 (2016). https://doi.org/10.1016/j.ceramint.2016.02.022

    Article  Google Scholar 

  31. Mestre, S., et al.: Low-cost ceramic membranes: a research opportunity for industrial application. J. Eur. Ceram 39(12), 3392–3407 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.054

    Article  Google Scholar 

  32. Achiou, B., Beqqour, D., Elomari, H., Bouazizi, A., Ouammou, M., M. bouhria, A. Aaddane, K. Khiat, S. Alami Younssi,: Preparation of inexpensive NaA zeolite membrane on pozzolan support at low temperature for dehydration of alcohol solutions. J. Environ. Chem. Eng. 6(4), 4429–4437 (2018). https://doi.org/10.1016/j.jece.2018.06.049

    Article  Google Scholar 

  33. Maghsoodloorad, H., Allahverdi, A.: Alkali-activation kinetics of phosphorus slag cement using compressive strength data. Ceram. Silik. 59(3), 250–60 (2015)

    Google Scholar 

  34. Youssef, M., Pellenq, R.J.M., Yildiz, B.: Glassy nature of water in an ultraconfining disordered material: the case of calcium−silicate−hydrate. J. Am. Chem. Soc. 133(8), 2499–2510 (2011). https://doi.org/10.1021/ja107003a

    Article  Google Scholar 

  35. Xianchen, W., Qin, Z.: Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite. Powder Technol. 371, 55–63 (2020). https://doi.org/10.1016/j.powtec.2020.05.081

    Article  Google Scholar 

  36. He, Y., Cui, X., Liu, X., Wang, Y., Zhang, J., Liu, K.: Preparation of self-supporting NaA zeolite membranes using geopolymers. J. Membr. Sci. 447, 66–72 (2013). https://doi.org/10.1016/j.memsci.2013.07.027

    Article  Google Scholar 

  37. Ben Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: effect of Al2O3. Cem. Concr. Res. 42(1), 74–83 (2012). https://doi.org/10.1016/j.cemconres.2011.08.005

    Article  Google Scholar 

  38. Ben Haha, M., Lothenbach, B., Le Saout, G., Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: effect of MgO. Cem. Concr. Res. (2011). https://doi.org/10.1016/j.cemconres.2011.05.002

    Article  Google Scholar 

  39. Yu, C., Zhong, C., Liu, Y., Gu, X., Yang, G., Xing, W., Xu, N.: Pervaporation dehydration of ethylene glycol by NaA zeolite membranes. Chem. Eng. Res. Des. 90(9), 1372–1380 (2012). https://doi.org/10.1016/j.cherd.2011.12.003

    Article  Google Scholar 

  40. Jafari, M., Nouri, A., Mousavi, S.F., Mohammadi, T., Kazemimoghadam, M.: Optimization of synthesis conditions for preparation of ceramic (A-type zeolite) membranes in dehydration of ethylene glycol. Ceram. 39(6), 6971–6979 (2013). https://doi.org/10.1016/j.ceramint.2013.02.034

    Article  Google Scholar 

  41. Holmberg, B.A., Wang, H., Yan, Y.: High silica zeolite Y nanocrystals by dealumination and direct synthesis. Microporous Mesoporous Mater. 74(1), 189–198 (2004). https://doi.org/10.1016/j.micromeso.2004.06.018

    Article  Google Scholar 

  42. Zhao, D., Gao, Y., Nie, S., Liu, Z., Wang, F., Liu, P., Hu, S.: Self-assembly of honeycomb-like calcium-aluminum-silicate-hydrate (C-A-S-H) on ceramsite sand and its application in photocatalysis. Chem. Eng. J. 344, 583–593 (2018). https://doi.org/10.1016/j.cej.2018.03.074

    Article  Google Scholar 

  43. Shilar, F.A., et al.: Assessment of destructive and nondestructive analysis for GGBS based geopolymer concrete and its statistical analysis. Polymers (2022). https://doi.org/10.3390/polym14153132

    Article  Google Scholar 

  44. Yan, He., X-m, C., jin, Mao, Le-ping, Liu, Xing-dong, Liu, Jin-yu, Chen: The hydrothermal transformation of solid geopolymers into zeolites. Microporous Mesoporous Mater. 161, 187–192 (2012). https://doi.org/10.1016/j.micromeso.2012.05.039

    Article  Google Scholar 

  45. Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater. 17(12), 3075–3085 (2005). https://doi.org/10.1021/cm050230i

    Article  Google Scholar 

  46. Michael, C.R., Brendon, J.B.: AMORPH: a statistical program for characterizing amorphous materials by X-ray diffraction. Comput. Geosci. 120, 21–31 (2018)

    Article  Google Scholar 

  47. Walkley, B., San Nicolas, R., Sani, M.A., Rees, G.J., Hanna, J.V., van Deventer, J.S.J., Provis, J.L.: Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 89, 120–135 (2016). https://doi.org/10.1016/j.cemconres.2016.08.010

    Article  Google Scholar 

  48. Kumar, A., Walder, B.J., Mohamed, A.K., Hofstetter, A., Srinivasan, B., Rossini, A.J., Scrivener, K., Emsley, L., Bowen, P.: The atomic-level structure of cementitious calcium silicate hydrate. J. Phys. Chem. C 121(32), 17188–17196 (2017). https://doi.org/10.1021/acs.jpcc.7b02439

    Article  Google Scholar 

  49. Liu, D., Zhang, Y., Jiang, J., Wang, X., Zhang, C., Gu, X.: High-performance NaA zeolite membranes supported on four-channel ceramic hollow fibers for ethanol dehydration. RSC Adv. 5(116), 95866–95871 (2015). https://doi.org/10.1039/C5RA18711G

    Article  Google Scholar 

  50. Berger, C., Gläser, R., Rakoczy, R.A., Weitkamp, J.: The synthesis of large crystals of zeolite Y re-visited. Microporous Mesoporous Mater. 83(1), 333–344 (2005). https://doi.org/10.1016/j.micromeso.2005.04.009

    Article  Google Scholar 

  51. Jafari, M., Bayat, A., Mohammadi, T., Kazemimoghadam, M.: Dehydration of ethylene glycol by pervaporation using gamma alumina/NaA zeolite composite membrane. Chem. Eng. Res. Des. 91(12), 2412–2419 (2013). https://doi.org/10.1016/j.cherd.2013.04.016

    Article  Google Scholar 

  52. Lee, N.K., Khalid, H.R., Lee, H.K.: Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment. Microporous Mesoporous Mater. (2016). https://doi.org/10.1016/j.micromeso.2016.04.016

    Article  Google Scholar 

  53. Part, W.K., Ramli, M., Cheah, C.B.: An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr. Build. Mater. 77, 370–395 (2015). https://doi.org/10.1016/j.conbuildmat.2014.12.065

    Article  Google Scholar 

  54. Lu, C., Qi, L., Cong, H., Wang, X., Yang, J., Yang, L., Zhang, D., Ma, J., Cao, W.: Synthesis of calcite single crystals with porous surface by templating of polymer latex particles. Chem. Mater. 17(20), 5218–5224 (2005). https://doi.org/10.1021/cm0513029

    Article  Google Scholar 

  55. J.M. Soler, Thermodynamic Description of the Solubility of C-S-H Gels in Hydrated Portland Cement. 2007, Institut de Ciències de la Terra "Jaume Almera" (CSIC).

  56. Shilar, F.A., et al.: Review on the relationship between nano modifications of geopolymer concrete and their structural characteristics. Polymers (2022). https://doi.org/10.3390/polym14071421

    Article  Google Scholar 

  57. Shilar, F.A., et al.: Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: a review. Case Stud. Constr. Mater 16, e01014 (2022). https://doi.org/10.1016/j.cscm.2022.e01014

    Article  Google Scholar 

  58. Frank, W., et al.: Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Constr. Build. Mater. 24(6), 1086–1093 (2010). https://doi.org/10.1016/j.conbuildmat.2009.11.007

    Article  Google Scholar 

  59. Hakan Tacettin, T., et al.: Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Constr. Build. Mater. 104, 169–180 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.070

    Article  Google Scholar 

  60. Zhaoxiang, Z., Weihong, X., Bingbing, Z.: Fabrication of ceramic membranes with controllable surface roughness and their applications in oil/water separation. Ceram. Intl. 39(4), 4355–4361 (2013). https://doi.org/10.1016/j.ceramint.2012.11.019

    Article  Google Scholar 

  61. Chen, X., Zeng, L., Fang, K.: Anti-crack performance of phosphorus slag concrete. Wuhan Univ. J. Nat. Sci. 14(1), 80–86 (2009). https://doi.org/10.1007/s11859-009-0117-9

    Article  Google Scholar 

  62. Subaer, A., et al.: Pervaporation membrane based on laterite zeolite-geopolymer for ethanol-water separation. J. Clean. Prod. 249, 119413 (2020). https://doi.org/10.1016/j.jclepro.2019.119413

    Article  Google Scholar 

  63. Jin Zhang, Y.H., Wang, Yi.-pin, Mao, Jin, Cui, Xue-min: Synthesis of a self-supporting faujasite zeolite membrane using geopolymer gel for separation of alcohol/water mixture. Mater. Lett. 116, 167–170 (2014). https://doi.org/10.1016/j.matlet.2013.11.008

    Article  Google Scholar 

  64. He, Yan, X-m, Cn., Liu, Xing-dong, Wang, Yi.-pin, Zhang, Jin, Liu, Kun: Preparation of self-supporting NaA zeolite membranes using geopolymers. J. Membr. Sci. 447, 66–72 (2013). https://doi.org/10.1016/j.memsci.2013.07.027

    Article  Google Scholar 

  65. Meng-xue, X., et al.: Preparation of a non-hydrothermal NaA zeolite membrane and defect elimination by vacuum-inhalation repair method. Chem. Eng. Sci. 158, 117–123 (2017). https://doi.org/10.1016/j.ces.2016.10.001

    Article  Google Scholar 

  66. Piotr, R., Magdalena, K., Włodzimierz, M.: Geopolymer-zeolite composites: a review. J. Clean. Prod. 230, 557–579 (2019). https://doi.org/10.1016/j.jclepro.2019.05.152

    Article  Google Scholar 

  67. Jiubing, Z., et al.: Facile fabrication of a low-cost and environmentally friendly inorganic-organic composite membrane for aquatic dye removal. J. Environ. Manage. 256, 109969 (2020). https://doi.org/10.1016/j.jenvman.2019.109969

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Ferdowsi University of Mashhad.

Funding

Ferdowsi University of Mashhad,49263,Farzaneh Mohammadi.

Author information

Authors and Affiliations

Authors

Contributions

FM: Idea, Formulation or evolution of overarching research goals and aims, Methodology, Software, Validation, Investigation, and Writing.

Corresponding author

Correspondence to Farzaneh Mohammadi.

Ethics declarations

Conflict of Interest

The author declares that  there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, F. Phosphoric Acid Industry Waste Valorization Through Fabrication of Alkali-Activated Phosphorus Slag-Based Ceramic Membranes: Synthesis and Optimization for Dehydration of Ethanol. Waste Biomass Valor (2023). https://doi.org/10.1007/s12649-023-02285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-023-02285-3

Keywords

Navigation