Skip to main content
Log in

Physical–Chemical, Functional and Antioxidant Properties of Dehydrated Pumpkin Seeds: Effects of Ultrasound Time and Amplitude and Drying Temperature

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study aimed to investigate the influence of ultrasound pretreatment conditions and drying temperature on the quality parameters of pumpkin seeds. Various parameters, including drying time, water content, water activity, pH, total titratable acidity, proteins and lipid content, vitamin C, antioxidant activity and instrumental color, were evaluated. An experimental design (23 + 3 central points) was employed, with independent variables of ultrasound time (5, 10 and 15 min), ultrasound amplitude (30, 50 and 70%), and drying temperature (50, 60 and 70 °C). The water content and water activity showed lower values in samples submitted to higher ultrasound amplitudes and drying temperatures. The pH of the samples ranged from 6.90 to 7.04, and the total titratable acidity ranged from 1.83 to 2.39. Milder ultrasound experiments promoted more remarkable preservation of vitamin C than the others, presenting values ranging from 15.76 to 26.02 mg/100 g. The increase in drying air temperature caused more significant protein denaturation. The antioxidant potential was not affected by the application of the ultrasound process. Among the compounds evaluated in the phenolic profile, Procyanidin B2 and Gallic Acid components were predominantly present. The most abundant fatty acids in the samples were oleic and linoleic. The results provide insights into the optimization of the drying process and the quality attributes of pumpkin seeds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data presented in the survey has not been previously shared.

References

  1. Wang, H., Chen, K., Cheng, J., Jiang, L., Yu, D., Dai, Y., Wang, L.: Ultrasound-assisted three phase partitioning for simultaneous extraction of oil. protein and polysaccharide from pumpkin seeds. LWT 151, 1–9 (2021). https://doi.org/10.1016/j.lwt.2021.112200

    Article  CAS  Google Scholar 

  2. Vinayashree, S., Vasu, P.: Biochemical, nutritional and functional properties of protein isolate and fractions from pumpkin (Cucurbita moschata var. Kashi Harit) seeds. Food Chem. 1, 1–9 (2020). https://doi.org/10.1016/j.foodchem.2020.128177

    Article  CAS  Google Scholar 

  3. Ferreira, C.I., Silva, P.S., Vilvert, J.C., Sousa, F.F., Freitas, S.T.: Brazilian varieties of acerola (Malpighia emarginata DC) produced under tropical semi-arid conditions: bioactive phenolic compounds, sugars, organic acids, and antioxidant capacity. J. Food Biochem. 45(8), 1–12 (2021). https://doi.org/10.1111/jfbc.13829

    Article  CAS  Google Scholar 

  4. Santos, N.C., Almeida, R.L.J., Brito, A.C.D.O., Silva, V.M.D.A., Albuquerque, J.C., Saraiva, M.M.T., Mota, M.M.D.A., et al.: Effect of pulse electric field (PEF) intensity combined with drying temperature on mass transfer, functional properties, and in vitro digestibility of dehydrated mango peels. J. Food Meas. Charact. (2023). https://doi.org/10.1007/s11694-023-02036-x

    Article  Google Scholar 

  5. Kotecha-Majchrzak, K., Sumara, A., Fornal, E., Montowska, M.: Oilseed proteins—properties and application as a food ingredient. Trends Food Sci. Technol. 106, 160–170 (2020). https://doi.org/10.1016/j.tifs.2020.10.004

    Article  CAS  Google Scholar 

  6. Rojas, V.M., Marconi, L.F., Guimarães, I.A., Lehmann, F.V., Tanami, A., Gozzo, A.M., Gonçalves, O.H., et al.: Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and bark oils. Food Chem. 274, 220–227 (2019). https://doi.org/10.1016/j.foodchem.2018.09.015

    Article  CAS  PubMed  Google Scholar 

  7. Chao, E., Tian, J., Fan, L., Zhang, T.: Drying methods influence the physicochemical and functional properties of seed-used pumpkin. Food Chem. 369, 1–10 (2022). https://doi.org/10.1016/j.foodchem.2021.130937

    Article  CAS  Google Scholar 

  8. Chikpah, S.K., Korese, J.K., Sturm, B., Hensel, O.: Colour change kinetics of pumpkin (Cucurbita moschata) slices during convective air drying and bioactive compounds of the dried products. J. Agric. Food Res. 10, 1–15 (2022). https://doi.org/10.1016/j.jafr.2022.100409

    Article  CAS  Google Scholar 

  9. Ramarao, I.D.R., Razali, C.S.Z., Kunasekaran, W., Jin, T.L.: The antioxidant properties and microbial load of Moringa oleifera leaves dried using a prototype convective air-dryer. Saudi J. Biol. Sci. 29(6), 1–8 (2022). https://doi.org/10.1016/j.sjbs.2022.103290

    Article  CAS  Google Scholar 

  10. Miano, C.A., Rojas, M.L., Augusto, P.E.D.: Combining ultrasound. vacuum and/or ethanol as pre-treatments to the convective drying of celery slices. Ultrason. Sonochem. 79, 1–9 (2021). https://doi.org/10.1016/j.ultsonch.2021.105779

    Article  CAS  Google Scholar 

  11. Kroenke, J., Szadzińska, J., Radziejewska-Kubzdela, E., Biegańska-Marecik, R., Musielak, G., Mierzwa, D.: Osmotic dehydration and convective drying of kiwifruit (Actinidia deliciosa)—the influence of ultrasound on process kinetics and product quality. Ultrason. Sonochem. 71, 7–11 (2021). https://doi.org/10.1016/j.ultsonch.2020.105377

    Article  CAS  Google Scholar 

  12. Bagheri, N., Dinani, S.T.: Investigation of ultrasound-assisted convective drying process on quality characteristics and drying kinetics of zucchini slices. Heat Mass Transf. 55, 2153–2163 (2019). https://doi.org/10.1007/s00231-019-02573-6

    Article  CAS  ADS  Google Scholar 

  13. Xu, B., Tiliwa, E.S., Yan, W., Azam, R.S.M., Wei, B., Zhou, C., Ma, H., Bhandari, B.: Recent development in high quality drying of fruits and vegetables assisted by ultrasound: a review. Food Res. Int. 21(1–78), 2021 (2021). https://doi.org/10.1016/j.foodres.2021.110744

    Article  Google Scholar 

  14. A.O.A.C.: Official Methods of Analysis of AOAC international, 20th edn. AOAC International, Rockville (2016)

    Google Scholar 

  15. Re, R., Pellegrini, N., Proteggemnte, A., Pannala, A., Yang, M., Rice, E.S.C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1234–1237 (1999)

    Article  Google Scholar 

  16. Kim, Y.K., Guo, Q., Packer, L.: Free radical scavenging activity of red ginseng aqueous extracts. Toxicology 172(2), 149–156 (2002). https://doi.org/10.1016/S0300-483X(01)00585-6

    Article  CAS  PubMed  Google Scholar 

  17. Rufino, M. D. S. M., Alves, R. E., Brito, E. S., Filho, J. M., Moreira, A. V. B.: Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas no Sistema β-caroteno/Ácido Linoléico. Comunicado Técnico. v.126. pp. 1–4. (2006). https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/664093/1/cot126.pdf

  18. Burin, V.M., Ferreira-Lima, N.E., Panceri, C.P., Bordignon-Luiz, M.T.: Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: evaluation of different extraction methods. Microchem. J. 114, 155–163 (2014). https://doi.org/10.1016/j.microc.2013.12.014

    Article  CAS  Google Scholar 

  19. Dutra, M.C.P., Rodrigues, L.L., Oliveira, D., Pereira, G.E., Lima, M.D.S.: Integrated analyses of phenolic compounds and minerals of Brazilian organic and conventional grape juices and wines: validation of a method for determination of Cu, Fe and Mn. Food Chem. 269, 157–165 (2018). https://doi.org/10.1016/j.foodchem.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  20. Padilha, C.V., Miskinis, G.A., Souza, M.E.A.O., Pereira, G.E., Oliveira, D., Bordignon, L.M.T., Lima, M., S.: Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chem. 228, 106–115 (2017). https://doi.org/10.1016/j.foodchem.2017.01.137

    Article  CAS  PubMed  Google Scholar 

  21. He, Z., Zhu, H., Li, W., Zeng, M., Wu, S., Chen, S., Chen, J.: Chemical components of cold pressed kernel oils from different Torreya grandis cultivars. Food Chem. 209, 196–202 (2016). https://doi.org/10.1016/j.foodchem.2016.04.053

    Article  CAS  PubMed  Google Scholar 

  22. Ghafoor, K., Özcan, M.M., Al-Juhaimi, F., Babiker, E.E., Fadimu, G.J.: Changes in quality bioactive compounds fatty acids tocopherols and phenolic composition in oven- and microwave-roasted poppy seeds and oil. LWT 99, 490–496 (2018). https://doi.org/10.1016/j.lwt.2018.10.017

    Article  CAS  Google Scholar 

  23. Adams, R.P.: Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured Publishing Corporation, Carol Stream (2007)

    Google Scholar 

  24. Adams, R.: Identification of Essential Oil Components by Gas Chromatography Quadrupole Mass Spectroscopy. Allured Publishing Corporation, Carol Stream (2001)

    Google Scholar 

  25. Malegori, C., Duncan, J., Mustorgi, E., Tsenkova, R., Oliveri, P.: Analysing the water spectral pattern by near-infrared spectroscopy and chemometrics as a dynamic multidimensional biomarker in preservation: rice germ storage monitoring. Spectrochim. Acta Part A 265, 1–14 (2022). https://doi.org/10.1016/j.saa.2021.120396

    Article  CAS  Google Scholar 

  26. Santos, N.C., Almeida, R.L.J., da Silva, G.M., Monteiro, S.S., Andre, A.M.M.: Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innov. Food Sci. Emerg. Technol. 66, 102507 (2020). https://doi.org/10.1016/j.ifset.2020.102507

    Article  CAS  Google Scholar 

  27. BRASI, Ministério da Saúde: Alimentos regionais brasileiros, 2nd edn. Ministério da Saúde, Brasília (2015)

    Google Scholar 

  28. Barros, S.L., Santos, N.C., Almeida, R.L.J., Silva, S.N., Nascimento, A.P.S., Almeida, R.D., Ribeiro, V.H.A., Silva, W.P., Gomes, J.P., Silva, V.M.A., Pereira, T.S., Santiago, A.M., Luiz, M.R.: Influence of pulp, sugar and maltodextrin addiction in the formulation of kiwi jellies with lemon grass tea. J. Agric. Sci. 11(15), 125–134 (2019). https://doi.org/10.5539/jasv.11n15p125

    Article  Google Scholar 

  29. Kowalski, S.J., Pawłowski, A., Szadzińska, J., Łechtańska, J., Stasiak, M.: High power airborne ultrasound assist in combined drying of raspberries. Innov. Food Sci. Emerg. Technol. 34, 225–233 (2016). https://doi.org/10.1016/j.ifset.2016.02.006

    Article  Google Scholar 

  30. Baeghbali, V., Ngadi, M., Niakousari, M.: Effects of ultrasound and infrared assisted conductive hydro-drying, freeze-drying and oven drying on physicochemical properties of okra slices. Innov. Food Sci. Emerg. Technol. 63, 1–8 (2020). https://doi.org/10.1016/j.ifset.2020.102313

    Article  CAS  Google Scholar 

  31. Ferreira, J.K., Vieira, E.A., Nitschke, M.: The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res. Int. 116, 737–744 (2019). https://doi.org/10.1016/j.foodres.2018.09.005

    Article  CAS  Google Scholar 

  32. Amadeu, L.T.S., Queiroz, AJdeM., de Figueirêdo, R.M.F., Paiva, Y.F., Ferreira, JPdeL., dos Reis, C.G., da Silva, R.C., Araújo, K.T.A., Coelho, N.O., Carneiro, EFdeS.: Sprouted pumpkin seed flour: physical, physical-chemical, and colorimetric aspects. Res. Soc. Dev. 10, 1 (2021). https://doi.org/10.33448/rsd-v10i3.13005

    Article  Google Scholar 

  33. Bouvie, L., Borella, D.R., Porto, P.A., Silva, A.C., Leonel, S.: Caracterização físico-química dos frutos de castanheira do Brasil. Nativa 4(2), 107–111 (2016). https://doi.org/10.14583/2318-7670.v04n02a10

    Article  Google Scholar 

  34. Barros, S.L., Santos, N.C., Nascimento, APdaS., Melo, M.O.P., Ribeiro, VHdeA., Silva, VMdeA.: Influence of dehydration in the physical–chemical quality of commercial sunflower almonds. J. Agric. Stud. 7(3), 82 (2019). https://doi.org/10.5296/jas.v7i3.15121

    Article  Google Scholar 

  35. Zhang, Y., Abatzoglou, N.: Review: fundamentals, applications and potentials of ultrasound-assisted drying. Chem. Eng. Res. Des. 154, 21–46 (2020). https://doi.org/10.1016/j.cherd.2019.11.025

    Article  CAS  Google Scholar 

  36. Amin, M.Z., Islam, T., Mostofa, F., Uddin, M.J., Rahman, M.M., Satter, M.A.: Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (Cucurbita maxima Linn.). Heliyon 5(12), 1–6 (2019). https://doi.org/10.1016/j.heliyon.2019.e02994

    Article  Google Scholar 

  37. Cao, X., Islam, M.N., Zhong, S., Pan, X., Song, M., Shang, F., Duan, Z., et al.: Drying kinetics, antioxidants, and physicochemical properties of litchi fruits by ultrasound-assisted hot air-drying. J. Food Biochem. 44(1), 1–9 (2019)

    CAS  Google Scholar 

  38. Nowata, M., Tylewicz, U., Romani, S., Dalla, R.M., Witrowa, R.: Influence of ultrasound-assisted osmotic dehydration on the main quality parameters of kiwifruit. Innov. Food Sci. Emerg. Technol. 41, 71–78 (2017). https://doi.org/10.1016/j.ifset.2017.02.002

    Article  Google Scholar 

  39. Medeiros, R.A.B., Barros, Z.M.P., Carvalho, C.B.O., Neta, E.G.F., Maciel, M.I.S., AzoubeL, P.M.: Influence of dual-stage sugar substitution pre-treatment on drying kinetics and quality parameters of mango. LWT Food Sci. Technol. 67, 167–173 (2016). https://doi.org/10.1016/j.lwt.2015.11.049

    Article  CAS  Google Scholar 

  40. Kamal, M.M., Ali, M.R., Shishir, M.R.I., Saifullah, M., Haque, M.R., Mondal, S.C.: Optimization of process parameters for improved production of biomass protein from Aspergillus niger using banana peel as a substrate. Food Sci. Biotechnol. (2019). https://doi.org/10.1007/s10068-019-00636-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kahraman, O., Malvandi, A., Vargas, L., Feng, H.: Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 73, 1–12 (2021). https://doi.org/10.1016/j.ultsonch.2021

    Article  Google Scholar 

  42. Hussain, A., Kausar, T., Din, A., Murtaza, M.A., Jamil, M.A., Noreen, S., Ramzan, M.A., et al.: Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). J. Food Process. Preserv. 45(6), 1–8 (2021). https://doi.org/10.1111/jfpp.15542

    Article  CAS  Google Scholar 

  43. Cong, J., Cui, J., Zhang, H., Sedem Dzah, C., He, Y., Duan, Y.: Binding affinity, antioxidative capacity and in vitro digestion of complexes of grape seed procyanidins and pork, chicken and fish protein. Food Res. Int. 136, 1–10 (2020). https://doi.org/10.1016/j.foodres.2020.109530

    Article  CAS  Google Scholar 

  44. Liu, D., Deng, J., Joshi, S., Liu, P., Zhang, C., Yu, Y., Souza, D.H.: Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiol. 76, 346–353 (2018). https://doi.org/10.1016/j.fm.2018.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Santos, T.B., Araujo, F.P., Neto, A.F., Freitas, S.T., Araújo, J.S., Vilar, S.B.O., Araujo, A.J.B., Lima, M.S.: Phytochemical compounds and antioxidant activity of the pulp of two Brazilian passion fruit species: Passiflora Cincinnati Mast and Passiflora Edulis Sims. Int. J. Fruit Sci. 21(1), 255–269 (2021). https://doi.org/10.1080/15538362.2021.1872050

    Article  Google Scholar 

  46. Ahmed, I.A.M., Al Juhaimi, F.Y., Osman, M.A., Al Maiman, S.A., Hassan, A.B., Alqah, H.A.S., Ghafoor, K.: Effect of oven roasting treatment on the antioxidant activity, phenolic compounds, fatty acids, minerals, and protein profile of Samh (Mesembryanthemum forsskalei Hochst) seeds. LWT 131, 1–6 (2020). https://doi.org/10.1016/j.lwt.2020.109825

    Article  CAS  Google Scholar 

  47. Kaseke, T., Opara, U.L., Fawole, O.A.: Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: effect of preharvest and processing factors. Heliyon 6(9), 1–15 (2020). https://doi.org/10.1016/j.heliyon.2020.e04962

    Article  CAS  Google Scholar 

  48. Sanwal, N., Mishra, S., Sahu, J.K., Naik, S.N.: Effect of ultrasound-assisted extraction on efficiency, antioxidant activity, and physicochemical properties of sea buckthorn (Hippophae salicipholia) seed oil. LWT 153, 1–13 (2022). https://doi.org/10.1016/j.lwt.2021.112386

    Article  CAS  Google Scholar 

  49. Rezig, L., Chouaibi, M., Meddeb, W., Msaada, K., Hamdi, S.: Chemical composition and bioactive compounds of Cucurbitaceae seeds: potential sources for new trends of plant oils. Process Saf. Environ. Prot. 127, 73–81 (2019). https://doi.org/10.1016/j.psep.2019.05.005

    Article  CAS  Google Scholar 

  50. Li, W., Wang, X., Zhang, J., Zhao, X., Wu, Y., Tan, S., Gao, X., et al.: Multivariate analysis illuminates the effects of vacuum drying on the extractable and nonextractable polyphenols profile of loquat fruit. J. Food Sci. 84(4), 726–737 (2019). https://doi.org/10.1111/1750-3841.14500

    Article  CAS  PubMed  Google Scholar 

  51. Li, Z., Wang, J., Zheng, B., Guo, Z.: Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrason. Sonochem. 65, 1–13 (2020). https://doi.org/10.1016/j.ultsonch.2020.105063

    Article  CAS  Google Scholar 

  52. Kainama, H., Fatmawati, S., Santoso, M., Papilaya, P.M., Ersam, T.: The relationship of free radical scavenging and total phenolic and flavonoid contents of Garcinia lasoar PAM. Pharm. Chem. J. 53, 1151–1157 (2020). https://doi.org/10.1007/s11094-020-02139-5

    Article  CAS  Google Scholar 

  53. Dotto, J. M. & Chacha, J. S.: The potential of pumpkin seeds as a functional food ingredient: A review. Scientific African, 10, 1–14 (2020). https://doi.org/10.1016/j.sciaf.2020.e00575

    Article  Google Scholar 

  54. Albuquerque, J. G., Escalona-Buendía, H. B., Cordeiro, A. M. T. M., Lima, M. S., Aquino, J. S., Vasconcelos, M. A. S.: Ultrasound treatment for improving the bioactive compounds and quality properties of a Brazilian nopal (Opuntia ficus-indica) beverage during shelf-life. LWT, 149, 1–12 (2021). https://doi.org/10.1016/j.lwt.2021.111814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to thank CNPQ (National Council for Scientific and Technological Development) for supporting this study and its research grant. The authors are grateful also to Federal University of Ceará (UFC), Federal Institute of Sertão Pernambucano (IF-Sertão) for technical support.

Funding

Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Contributions

SLB: conceptualization, methodology, investigation, formal analysis, software, data curation, and writing original draft. MMF: conceptualization, methodology, investigation, formal analysis, software, data curation, and writing original draft. AJBAC: Conceptualization; Methodology; Investigation. MSL: Conceptualization; Methodology; Investigation. VBF: Conceptualization; Methodology; Investigation. IGPV: Conceptualization; Methodology; Investigation. NSC: Visualization. FLM: Conceptualization; Methodology, Investigation. LVB: conceptualization, writing, review and editing, funding acquisition, project administration, resources, supervision, and validation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sâmela Leal Barros.

Ethics declarations

Conflict of interest

There are no conflicts of interest or competing interests to disclose.

Ethical Approval

The study did not include trials with humans or animals.

Research Involving Human and Animal Rights

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, S.L., Frota, M.M., de Menezes, F.L. et al. Physical–Chemical, Functional and Antioxidant Properties of Dehydrated Pumpkin Seeds: Effects of Ultrasound Time and Amplitude and Drying Temperature. Waste Biomass Valor 15, 1123–1140 (2024). https://doi.org/10.1007/s12649-023-02235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02235-z

Keywords

Navigation