Skip to main content

Advertisement

Log in

Strategizing Assistive Heating Techniques on Delignification of Empty Fruit Bunch with Incorporation of Deep Eutectic Solvent

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A biomass pretreatment utilizing biodegradable deep eutectic solvent (DES) incorporated into assistive heating techniques, would lead to an energy-efficient extraction. To achieve effective extraction yield while reducing the energy usage, lignin in oil palm empty fruit bunch (EFB) was extracted using DES with microwave heating and ultrasonic irradiation in the current study. The feasibility of lignin extraction using the heating methods in sequential order was examined ensued by optimization study with investigated parameters include water content in DES, irradiation duration, and heating method power. The best sequential ultrasonic irradiation—microwave heating (UMAE) resulted in delignification efficiency of 82.7% within 1 h. The yield is comparable with that using oil bath heating and same DES, but the latter involved 8 folds longer extraction time. The lignin obtained from this method is thermally stable (~ 356 °C decomposition temperature), with significant amount of phenolic compound and β–O–4 bonds (> 80%), implying that it has the potential for downstream modification. The mechanisms of delignification using DES-incorporated assistive heating methods were discussed. This study demonstrated that combining DES and UMAE in lignin extraction is simple and efficient, resulting in an 40% energy reduction and 90% decrease in pretreatment duration as compared to conventional method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Chen, Z., Bai, X.L.A., Wan, C.: High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals. ACS Sustainable Chem. Eng., 6(9): 12205–12216 (2018). doi: https://doi.org/10.1021/acssuschemeng.8b02541

  2. H. Xu et al.: Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: a review. Bioresource Technol., 310: 123416 (2020). doi: https://doi.org/10.1016/j.biortech.2020.123416

  3. Karp, S.G., Woiciechowski, A.L., Soccol, V.T., Soccol, C.R.: Pretreatment strategies for delignification of sugarcane bagasse: a review. Braz. Arch. Biol. Technol. 56(4), 679–689 (2013). https://doi.org/10.1590/S1516-89132013000400019

    Article  Google Scholar 

  4. Chen, Z., Reznicek, W.D., Wan, C.: Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Biores. Technol. 263, 40–48 (2018). https://doi.org/10.1016/j.biortech.2018.04.058

    Article  Google Scholar 

  5. Aghamohammadi, N., Reginald, S., Shamiri, A., Zinatizadeh, A., Wong, L., Nik Sulaiman, N.: An Investigation of sustainable power generation from oil palm biomass: a case study in Sarawak. Sustainability, 8(5): 416 (2016). doi: https://doi.org/10.3390/su8050416

  6. Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A.: Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21, 506–523 (2013). https://doi.org/10.1016/j.rser.2012.12.022

    Article  Google Scholar 

  7. Nations, U.: The 2030 agenda and the sustainable development goals: an opportunity for latin america and the caribbean (LC/G.2681-P/Rev.3) (2018)

  8. Ragauskas, A.J., et al.: Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185), 1246843–1246843 (2014). https://doi.org/10.1126/science.1246843

    Article  Google Scholar 

  9. Rinaldi, R., et al.: Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55(29), 8164–8215 (2016). https://doi.org/10.1002/anie.201510351

    Article  Google Scholar 

  10. Renders, T., Van den Bosch, S., Koelewijn, S.-F., Schutyser, W., Sels, B.F.: Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10(7), 1551–1557 (2017). https://doi.org/10.1039/C7EE01298E

    Article  Google Scholar 

  11. Sathitsuksanoh, N., et al.: Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chem. 16(3), 1236–1247 (2014). https://doi.org/10.1039/C3GC42295J

    Article  Google Scholar 

  12. Balakshin, M., Capanema, E., Gracz, H., Chang, H., Jameel, H.: Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233(6), 1097–1110 (2011). https://doi.org/10.1007/s00425-011-1359-2

    Article  Google Scholar 

  13. Cheng, J., Leu, S.-Y., Zhu, J.Y., Jeffries, T.W.: Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading. Biores. Technol. 164, 331–337 (2014). https://doi.org/10.1016/j.biortech.2014.04.102

    Article  Google Scholar 

  14. Risdianto, H., Sugesty, S.: Pretreatment of Marasmius sp. on biopulping of oil palm empty fruit bunches. MAS, 9(7): 1 (2015). doi: https://doi.org/10.5539/mas.v9n7p1

  15. Sabiha-Hanim, S., Noor, M.A.M., Rosma, A.: Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Biores. Technol. 102(2), 1234–1239 (2011). https://doi.org/10.1016/j.biortech.2010.08.017

    Article  Google Scholar 

  16. Yang, B., Tao, L., Wyman, C.E.: Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels Bioprod. Bioref. 12(1), 125–138 (2018). https://doi.org/10.1002/bbb.1825

    Article  Google Scholar 

  17. Jönsson, L.J., Martín, C.: Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Biores. Technol. 199, 103–112 (2016). https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  18. Rastogi, M., Shrivastava, S.: Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew. Sustain. Energy Rev. 80, 330–340 (2017). https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  19. Abbott, AP., Capper, G., Davies, DL., Rasheed, RK., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures electronic. Chem. Commun. (2003). doi: https://doi.org/10.1039/b210714g

  20. van Osch, D.J.G.P., Kollau, L.J.B.M., van den Bruinhorst, A., Asikainen, S., Rocha, M.A.A., Kroon, M.C.: Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys. Chem. Chem. Phys. 19(4), 2636–2665 (2017). https://doi.org/10.1039/C6CP07499E

    Article  Google Scholar 

  21. Tan, Y.T., Ngoh, G.C., Chua, A.S.M.: Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind. Crops Prod. 123, 271–277 (2018). https://doi.org/10.1016/j.indcrop.2018.06.091

    Article  Google Scholar 

  22. Adepu, K., Shah, E., Patel, A., Sharma, S., Dixit, G.: Physico-chemical characterization and evaluation of neat and aqueous mixtures of choline chloride + lactic acid for lignocellulosic biomass fractionation, enzymatic hydrolysis and fermentation. J. Mol. Liq. 271, 540–549 (2018). https://doi.org/10.1016/j.molliq.2018.09.032

    Article  Google Scholar 

  23. Long, C., et al.: A novel deep eutectic solvent from lignin-derived acids for improving the enzymatic digestibility of herbal residues from cellulose. Cellulose 26(3), 1947–1959 (2019). https://doi.org/10.1007/s10570-018-2190-8

    Article  Google Scholar 

  24. Tan, Y.T., Ngoh, G.C., Chua, A.S.M.: Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Biores. Technol. 281, 359–366 (2019). https://doi.org/10.1016/j.biortech.2019.02.010

    Article  Google Scholar 

  25. Liu, Y., et al.: Enhanced enzymatic hydrolysis and lignin extraction of wheat straw by triethylbenzyl ammonium chloride/lactic acid-based deep eutectic solvent pretreatment. ACS Omega 4(22), 19829–19839 (2019). https://doi.org/10.1021/acsomega.9b02709

    Article  Google Scholar 

  26. Sindhu, R., Silviya, N., Binod, P., Pandey, A.: Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem. Eng. J. 78, 67–72 (2013). https://doi.org/10.1016/j.bej.2012.12.015

    Article  Google Scholar 

  27. Yan, D., et al.: Multimode-ultrasound and microwave assisted natural ternary deep eutectic solvent sequential pretreatments for corn straw biomass deconstruction under mild conditions. Ultrasonics Sonochem., 72: 105414 (2021). doi: https://doi.org/10.1016/j.ultsonch.2020.105414

  28. Sluiter, A., et al.: Determination of structural carbohydrates and lignin in biomass. In: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, pp. 1–18 (2012)

  29. Wu, C.-F., Hamada, M.: Experiments: planning, analysis, and optimization, 2nd edn. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  30. Jun, H., Xiao, R., Shen, D., Zhang, H.: Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Biores. Technol. 128, 633–639 (2013). https://doi.org/10.1016/j.biortech.2012.10.148

    Article  Google Scholar 

  31. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response surface methodology: process and product optimization using designed experiments, 4th edn. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  32. V. Z. Ong, T. Y. Wu, C. B. T. L. Lee, N. W. R. Cheong, and K. P. Y. Shak, (2019) Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics Sonochem., 58: 104598, doi: https://doi.org/10.1016/j.ultsonch.2019.05.015

  33. Q. Ji, X. Yu, A. E.-G. A. Yagoub, L. Chen, and C. Zhou, (2020) Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind. Crops Prod., 149: 112357, doi: https://doi.org/10.1016/j.indcrop.2020.112357

  34. Malaeke, H., Housaindokht, M.R., Monhemi, H., Izadyar, M.: Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. J. Mol. Liq. 263, 193–199 (2018). https://doi.org/10.1016/j.molliq.2018.05.001

    Article  Google Scholar 

  35. Ma, J., Ji, Z., Chen, J.C., Zhou, X., Kim, Y.S., Xu, F.: The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling. Planta 242(1), 327–337 (2015). https://doi.org/10.1007/s00425-015-2313-5

    Article  Google Scholar 

  36. Jablonsky, M., Haz, A., Majova, V.: Assessing the opportunities for applying deep eutectic solvents for fractionation of beech wood and wheat straw. Cellulose 26(13–14), 7675–7684 (2019). https://doi.org/10.1007/s10570-019-02629-0

    Article  Google Scholar 

  37. Ninomiya, K., et al.: Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. Biores. Technol. 176, 169–174 (2015). https://doi.org/10.1016/j.biortech.2014.11.038

    Article  Google Scholar 

  38. Narendra, K., Muley, P.D., Boldor, D., Coty, G.G., Lynam, J.G.: Pretreatment of waste biomass in deep eutectic solvents: conductive heating versus microwave heating. Ind. Crops Prod., 142: 111865 (2019). doi: https://doi.org/10.1016/j.indcrop.2019.111865

  39. Hou, X.-D., Lin, K.-P., Li, A.-L., Yang, L.-M., Fu, M.-H.: Effect of constituents molar ratios of deep eutectic solvents on rice straw fractionation efficiency and the micro-mechanism investigation. Ind. Crops Prod. 120, 322–329 (2018). https://doi.org/10.1016/j.indcrop.2018.04.076

    Article  Google Scholar 

  40. Aguilar-Reynosa, A., Romaní, A., Rodríguez-Jasso, Ma.R., Aguilar, C.N., Garrote, G., Ruiz, H. A.: Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energy Conv. Manag., 136: 50–65 (2017). doi:https://doi.org/10.1016/j.enconman.2017.01.004

  41. Mohtar, S.S., et al.: Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Biores. Technol. 192, 212–218 (2015). https://doi.org/10.1016/j.biortech.2015.05.029

    Article  Google Scholar 

  42. Halder, P., Kundu, S., Patel, S., Marzbali, M.H., Parthasarathy, R., Shah, K.: Investigation of reaction mechanism and the effects of process parameters on ionic liquid-based delignification of sugarcane straw. Bioenerg. Res. 13(4), 1144–1158 (2020). https://doi.org/10.1007/s12155-020-10134-7

    Article  Google Scholar 

  43. Wen, J.-L., Sun, S.-L., Xue, B.-L., Sun, R.-C.: Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6(1), 359–391 (2013). https://doi.org/10.3390/ma6010359

    Article  Google Scholar 

  44. Huang, J., Wu, S., Cheng, H., Lei, M., Liang, J., Tong, H.: Theoretical study of bond dissociation energies for lignin model compounds. J. Fuel Chem. Technol. 43(4), 429–436 (2015). https://doi.org/10.1016/S1872-5813(15)30011-6

    Article  Google Scholar 

  45. Boerjan, W., Ralph, J., Baucher, M.: Lignin biosynthesis. Annu. Rev. Plant Biol. 54(1), 519–546 (2003). https://doi.org/10.1146/annurev.arplant.54.031902.134938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YT: conceptualization, investigation, writing—original draft. ASM: conceptualization, visualization, resources, supervision. GC: conceptualization, writing—review & editing, resources, funding acquisition, project administration, supervision.

Corresponding author

Correspondence to Gek Cheng Ngoh.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests.

Ethical Approval

The present material has not been published, simultaneously submitted, or accepted elsewhere, and it has been approved by the co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 80 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, Y.T., Chua, A.S.M. & Ngoh, G.C. Strategizing Assistive Heating Techniques on Delignification of Empty Fruit Bunch with Incorporation of Deep Eutectic Solvent. Waste Biomass Valor 14, 2801–2814 (2023). https://doi.org/10.1007/s12649-023-02079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02079-7

Keywords

Navigation