Skip to main content

Advertisement

Log in

Valorization of Solid Food Waste as a Source of Polyunsaturated Fatty Acids Using Aurantiochytrium sp. L3W

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study aimed at valorizing solid food waste containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA).

Methods

Aurantiochytrium sp. L3W that produces DHA and EPA was cultivated on eight types of solid food waste: sake lees (SL), crown daisy, Japanese mustard spinach (JMS), soy sauce residue, lemon peel (LP), orange peel, grape skin, and Hiroshimana old pickle (HOP). The biomass mixture of the remaining food waste and strain L3W was analyzed for DHA and EPA. To characterize the types of food waste, the leachability of dissolved organic carbon (DOC) and dissolved nitrogen (DN) was compared.

Results

The strain L3W grew on both pasteurized and unsterilized food waste such as SL and JMS. Elution of DOC and DN from the food waste might be a factor affecting the growth of strain L3W. However, the strain L3W might utilize solid-state organic compounds in JMS. Despite the unsterile conditions, the biomass mixture of SL contained both DHA and EPA, whereas DHA was found in the biomass mixtures of JMS, LP and HOP, thereby confirming the valorization of these types of solid food waste. Unsterile mass cultivation of the strain L3W using SL and HOP in a 200 L tank also produced a biomass mixture containing 12.6 mg-DHA/g and 0.217 mg-EPA/g. These DHA and EPA contents were 1500-times and 37-times higher, respectively, than that in commercial poultry feed, indicating that the biomass mixtures could be used as an additive in poultry feed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ghazani, S.M., Marangoni, A.G.: Microbial lipids for foods. Trends Food Sci. Technol. 119, 593–607 (2022). https://doi.org/10.1016/j.tifs.2021.10.014

    Article  Google Scholar 

  2. Copeman, L.A., Parrish, C.C., Brown, J.A., Harel, M.: Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210, 285–304 (2002). https://doi.org/10.1016/S0044-8486(01)00849-3

    Article  Google Scholar 

  3. Shepherd, C.J., Monroig, O., Tocher, D.R.: Future availability of raw materials for salmon feeds and supply chain implications: the case of scottish farmed salmon. Aquaculture 467, 49–62 (2017). https://doi.org/10.1016/j.aquaculture.2016.08.021

    Article  Google Scholar 

  4. Takeuchi, T., Toyota, M., Satoh, S., Watanabe, T.: Requirement of Juvenile Red Seabream Pagrus major for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi 56, 1263–1269 (1990). https://doi.org/10.2331/suisan.56.1263

    Article  Google Scholar 

  5. Shamim, A., Mahmood, T., Ahsan, F., Kumar, A., Bagga, P.: Lipids: an insight into the neurodegenerative disorders. Clin. Nutr. Exp. 20, 1–19 (2018). https://doi.org/10.1016/j.yclnex.2018.05.001

    Article  Google Scholar 

  6. Smith, G.I., Julliand, S., Reeds, D.N., Sinacore, D.R., Klein, S., Mittendorfer, B.: Fish oil–derived n – 3 PUFA therapy increases muscle mass and function in healthy older adults1. Am. J. Clin. Nutr 102, 115–122 (2015). https://doi.org/10.3945/ajcn.114.105833

    Article  Google Scholar 

  7. Salazar, T., Cai, M.B., Bailey, H., Huang, R.: Defining nutritionally and environmentally healthy dietary choices of omega-3 fatty acids. J. Clean. Prod. 228, 1025–1033 (2019). https://doi.org/10.1016/j.jclepro.2019.04.359

    Article  Google Scholar 

  8. Tocher, D.R., Betancor, M.B., Sprague, M., Olsen, R.E., Napier, J.A.: Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between Supply and demand. Nutrients. (2019). https://doi.org/10.3390/nu11010089

    Article  Google Scholar 

  9. Cadillo-Benalcazar, J.J., Giampietro, M., Bukkens, S.G.F., Strand, R.: Multi-scale integrated evaluation of the sustainability of large-scale use of alternative feeds in salmon aquaculture. J. Clean. Prod. 248, 119210 (2020). https://doi.org/10.1016/j.jclepro.2019.119210

    Article  Google Scholar 

  10. Nakai, S., Das, A., Maeda, Y., Humaidah, N., Ohno, M., Nishijima, W., Gotoh, T., Okuda, T.: A novel strain of Aurantiochytrium sp. Strain L3W and its characteristics of biomass and lipid production including valuable fatty acids. J. Water Environ. Technol. 19, 24–34 (2021). https://doi.org/10.2965/jwet.20-087

    Article  Google Scholar 

  11. Katerina, K., Berge, G.M., Turid, M., Aleksei, K., Grete, B., Trine, Y., Mats, C., John, S., Bente, R.: Microalgal Schizochytrium limacinum biomass improves growth and filet quality when used long-term as a replacement for fish oil modern salmon diets. Front. Mar. Sci. (2020). https://doi.org/10.3389/fmars.2020.00057

    Article  Google Scholar 

  12. Wei, M., Parrish, C.C., Guerra, N.I., Armenta, R.E., Colombo, S.M.: Extracted microbial oil from a novel Schizochytrium sp. (T18) as a sustainable high DHA source for Atlantic salmon feed: impacts on growth and tissue lipids. Aquaculture 534, 736249 (2021). https://doi.org/10.1016/j.aquaculture.2020.736249

    Article  Google Scholar 

  13. Maldonado-Othón, C.A., Perez-Velazquez, M., Gatlin, D.M., González-Félix, M.L.: Replacement of fish oil by soybean oil and microalgal meals in diets for Totoaba macdonaldi (Gilbert, 1890) juveniles. Aquaculture 529, 735705 (2020). https://doi.org/10.1016/j.aquaculture.2020.735705

    Article  Google Scholar 

  14. Serrano, E., Simpfendorfer, R., Medina, A., Sandoval, C., Martínez, A., Morales, R., Davies, S.J.: Partially replacing fish oil with microalgae (Schizochytrium limacinum and Nannochloropsis oceanica) in diets for rainbow trout (Oncorhynchus mykiss) reared in saltwater with reference to growth performance, muscle fatty acid composition and liver ultrastructure. Aquac Res 52, 4401–4413 (2021). https://doi.org/10.1111/are.15279

    Article  Google Scholar 

  15. Humaidah, N., Nakai, S., Nishijima, W., Gotoh, T., Furuta, M.: Application of Aurantiochytrium sp. L3W for food-processing wastewater treatment in combination with polyunsaturated fatty acids production for fish aquaculture. Sci. Total Environ. 743, 140735 (2020). https://doi.org/10.1016/j.scitotenv.2020.140735

    Article  Google Scholar 

  16. Humaidah, N., Nakai, S., Nishijima, W., Gotoh, T.: Utilization of saline and viscous food-processing liquid waste for cultivation of thraustochytrid for production of polyunsaturated fatty acids. Clean. Technol. Environ. Policy (2022). https://doi.org/10.1007/s10098-022-02348-4

    Article  Google Scholar 

  17. Lee, G.-I., Shin, W.-S., MoonGeun Jung, S., Kim, W., Lee, C., Kwon, J.-H.: Effects of soybean curd wastewater on growth and DHA production in Aurantiochytrium sp. LWT 134, 110245 (2020). https://doi.org/10.1016/j.lwt.2020.110245

    Article  Google Scholar 

  18. Patel, A., Delgado Vellosillo, I., Rova, U., Matsakas, L., Christakopoulos, P.: A novel bioprocess engineering approach to recycle hydrophilic and hydrophobic waste under high salinity conditions for the production of nutraceutical compounds. Chem. Eng. J 431, 133955 (2022). https://doi.org/10.1016/j.cej.2021.133955

    Article  Google Scholar 

  19. Patel, A., Rova, U., Christakopoulos, P., Matsakas, L.: Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. Sci. Total Environ. 736, 139691 (2020). https://doi.org/10.1016/j.scitotenv.2020.139691

    Article  Google Scholar 

  20. Pawar, P.R., Lali, A.M., Prakash, G.: Integration of continuous-high cell density-fed-batch fermentation for Aurantiochytrium limacinum for simultaneous high biomass, lipids and docosahexaenoic acid production. Bioresour. Technol. 325, 124636 (2021). https://doi.org/10.1016/j.biortech.2020.124636

    Article  Google Scholar 

  21. Ryu, B.-G., Kim, K., Kim, J., Han, J.-I., Yang, J.-W.: Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour. Technol. 129, 351–359 (2013). https://doi.org/10.1016/j.biortech.2012.11.049

    Article  Google Scholar 

  22. Unagul, P., Suetrong, S., Preedanon, S., Klaysuban, A., Gundool, W., Suriyachadkun, C., Sakayaroj, J.: Isolation, fatty acid profiles and cryopreservation of marine thraustochytrids from mangrove habitats in Thailand. Bot. Mar. 60, 363–379 (2017). https://doi.org/10.1515/bot-2016-0111

    Article  Google Scholar 

  23. Bremer, G.B., Talbot, G.: Cellulolytic enzyme activity in the marine protist Schizochytrium aggregatum. Bot. Mar. 38, 37–42 (1995). https://doi.org/10.1515/botm.1995.38.1-6.37

    Article  Google Scholar 

  24. Nagano, N., Matsui, S., Kuramura, T., Taoka, Y., Honda, D., Hayashi, M.: The distribution of extracellular cellulase activity in marine eukaryotes Thraustochytrids. Mar. Biotechnol. 13, 133–136 (2011). https://doi.org/10.1007/s10126-010-9297-8

    Article  Google Scholar 

  25. Taoka, Y., Nagano, N., Kai, H., Hayashi, M.: Degradation of distillery lees (Shochu kasu) by cellulase-producing Thraustochytrids. J. Oleo Sci. 66, 31–40 (2017). https://doi.org/10.5650/jos.ess16148

    Article  Google Scholar 

  26. Raghukumar, S., Sharma, S., Raghukumar, C., Sathe-Pathak, V., Chandramohan, D.: Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J. Exp. Mar. Bio Ecol. 183, 113–131 (1994). https://doi.org/10.1016/0022-0981(94)90160-0

    Article  Google Scholar 

  27. Rinka, Y., Daiske, H.: Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov.  Mycoscience 48, 199–211 (2007)

    Article  Google Scholar 

  28. Osada, H., Kutsuki, Y., Kawaguchi, J.: On utilization of sake lees. Colloids Food Technol. 20, 27–34 (1994)

    Google Scholar 

  29. Quilodrán, B., Hinzpeter, I., Quiroz, A., Shene, C.: Evaluation of liquid residues from beer and potato processing for the production of docosahexaenoic acid (C22:6n-3, DHA) by native thraustochytrid strains. World J. Microbiol. Biotechnol. 25, 2121 (2009). https://doi.org/10.1007/s11274-009-0115-2

    Article  Google Scholar 

  30. Fan, K.W., Aki, T., Chen, F., Jiang, Y.: Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J. Microbiol. Biotechnol. 26, 1303–1309 (2010). https://doi.org/10.1007/s11274-009-0301-2

    Article  Google Scholar 

  31. Patel, A., Rova, U., Christakopoulos, P., Matsakas, L.: Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnol. Biofuels 12, 255 (2019). https://doi.org/10.1186/s13068-019-1593-6

    Article  Google Scholar 

  32. Iwasaka, H., Aki, T., Adachi, H., Watanabe, K., Kawamoto, S., Ono, K.: Utilization of waste syrup for production of polyunsaturated fatty acids and xanthophylls by Aurantiochytrium. J. Oleo Sci 62, 729–736 (2013). https://doi.org/10.5650/jos.62.729

    Article  Google Scholar 

  33. González-Molina, E., Domínguez-Perles, R., Moreno, D.A., García-Viguera, C.: Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 51, 327–345 (2010). https://doi.org/10.1016/j.jpba.2009.07.027

    Article  Google Scholar 

  34. Nakai, S., Inoue, Y., Hosomi, M.: Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Res. 35, 1855–1859 (2001). https://doi.org/10.1016/S0043-1354(00)00444-9

    Article  Google Scholar 

  35. Jakobsen, A.N., Aasen, I.M., Josefsen, K.D., Strøm, A.R.: Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl. Microbiol. Biotechnol. 80, 297–306 (2008). https://doi.org/10.1007/s00253-008-1537-8

    Article  Google Scholar 

  36. Huang, T.Y., Lu, W.C., Chu, I.M.: A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour. Technol. 123, 8–14 (2012). https://doi.org/10.1016/j.biortech.2012.07.068

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 19KT0012 and Japan Science and Technology Agency (JST) as part of SICORP, Grant Number JPMJSC21E8. We thank Philip Creed, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

JSPS KAKENHI Grant Number 19KT0012 and Japan Science and Technology Agency (JST) as part of SICORP, Grant Number JPMJSC21E8.

Author information

Authors and Affiliations

Authors

Contributions

TS: methodology, formal analysis, writing-original draft; SN: methodology, investigation, conceptualization, writing-review & editing, project administration, funding acquisition; AU: formal analysis, resources; WN: supervision, writing-review & editing, resources; TG: supervision, resources; NH: methodology, resources.

Corresponding author

Correspondence to Satoshi Nakai.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suenaga, T., Nakai, S., Umehara, A. et al. Valorization of Solid Food Waste as a Source of Polyunsaturated Fatty Acids Using Aurantiochytrium sp. L3W. Waste Biomass Valor 14, 2945–2956 (2023). https://doi.org/10.1007/s12649-023-02072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02072-0

Keywords

Navigation