Skip to main content

Advertisement

Log in

Improving Pharmaceuticals Removal at Wastewater Treatment Plants Using Biochar: A Review

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

A Correction to this article was published on 02 March 2023

This article has been updated

Abstract

The presence of pharmaceuticals within the environment poses serious threat to the health of humans and animals. Owing to the inability of existing wastewater treatment methods to completely remove pharmaceuticals when wastewater is treated at wastewater treatment plants, their effluent have been recognized as one of the main sources of pharmaceuticals into the environment. The negative effect of some of these pharmaceuticals in the environment has resulted in rising concern on how to improve wastewater treatment methods at wastewater treatment plants. Recently, adsorption process has been considered as an efficient method to complement the existing methods of wastewater treatment. This is because of the high affinity of suitable adsorbents for pharmaceuticals within wastewater. Nonetheless, the high price of prevalent adsorbent like activated carbon has been a major limitation. Biochar that possesses similar properties to activated carbon has recently been reported by different literature to be efficient in the removal of pharmaceuticals from wastewater and aqueous solution. Because of this, several literature were studied on pharmaceuticals adsorption with the use of biochar and a summary of our findings are presented in this review. In addition, a recent report in Estonia has shown considerable pharmaceuticals concentration above the limit of detection in the effluent streams of wastewater treatment plants. Based on the rate of human consumption data, The authors focused on three pharmaceuticals (1) Metformin, (2) Ibuprofen, and (3) Diclofenac which are part of the readily detected in wastewater treatment effluents in Estonia. In response to their inefficient removal, this paper offers the possibility of using adsorption, specifically with the use of biochar as an economical adsorbent for improving their removal. The findings in this review range from wastewater treatment methods, biochar production and characterization methods to the mechanisms involved in using biochar for the removal of pharmaceuticals. Lastly, the major challenges related with this possibility are highlighted, while recommendations for future research are also highlighted to hasten the implementation of adsorption process using biochar material as the adsorbent for improving pharmaceuticals removal from wastewater.

Graphical Abstract

Highlights

  • The presence of pharmaceuticals in the environment poses serious threat to the lives of human and animals

  • The effluents of wastewater treatment plants have been identified as a major source of pharmaceuticals within the environment

  • Concentrations of Diclofenac, Ibuprofen, and Metformin remain high in the effluents of wastewater treatment plants in Estonia

  • Adsorption has the capacity to assist in improving pharmaceuticals removal during wastewater treatment at wastewater treatment plants

  • Biochar possesses the desired features to replace high-cost adsorbents during an adsorption process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source of information.

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The source of all the data utilized in the manuscript was properly cited.

Change history

References

  1. Ebele, A.J., Abou-Elwafa Abdallah, M., Harrad, S.: Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3(1), 1–16 (2017). https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  2. Haiba, E., Nei, L., Ivask, M., Peda, J., Järvis, J., Lillenberg, M., Kipper, K., Herodes, K.: Sewage sludge composting and fate of pharmaceutical residues-recent studies in Estonia. Agron. Res. 14(5), 1583–1600 (2016)

    Google Scholar 

  3. Medscape. (n.d.). Diabinese (chlorpropamide) dosing, indications, interactions, adverse effects, and more. https://reference.medscape.com/drug/diabinese-chlorpropamide-342704 Accessed 28 June 2022

  4. Nasri, H., Rafieian-Kopaei, M.: Metformin: current knowledge. J. Res. Med. Sci. 19(7), 658 (2014)

    Google Scholar 

  5. Dai, C., Li, S., Duan, Y., Leong, K.H., Tu, Y., Zhou, L.: Human health risk assessment of selected pharmaceuticals in the five major river basins China. Sci. Total Environ. 801, 149730 (2021). https://doi.org/10.1016/J.SCITOTENV.2021.149730

    Article  Google Scholar 

  6. Alfonso-Muniozguren, P., Serna-Galvis, E.A., Bussemaker, M., Torres-Palma, R.A., Lee, J.: A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 76, 105656 (2021). https://doi.org/10.1016/J.ULTSONCH.2021.105656

    Article  Google Scholar 

  7. Archer, E., Petrie, B., Kasprzyk-Hordern, B., Wolfaardt, G.M.: The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere (2017). https://doi.org/10.1016/j.chemosphere.2017.01.101

    Article  Google Scholar 

  8. González-Alonso, S., Merino, L.M., Esteban, S., López de Alda, M., Barceló, D., Durán, J.J., López-Martínez, J., Aceña, J., Pérez, S., Mastroianni, N., Silva, A., Catalá, M., Valcárcel, Y.: Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environ. Pollut. 229, 241–254 (2017). https://doi.org/10.1016/j.envpol.2017.05.060

    Article  Google Scholar 

  9. Madikizela, L.M., Ncube, S., Tutu, H., Richards, H., Newman, B., Ndungu, K., Chimuka, L.: Pharmaceuticals and their metabolites in the marine environment: sources, analytical methods and occurrence. Trends Environ. Anal. Chem. 28, e00104 (2020). https://doi.org/10.1016/J.TEAC.2020.E00104

    Article  Google Scholar 

  10. Undeman, E., Rasmusson, K., Kokorite, I., Leppänen, M.T., Larsen, M.M., Pazdro, K., Siedlewicz, G.: Micropollutants in urban wastewater: large-scale emission estimates and analysis of measured concentrations in the Baltic Sea catchment. Mar. Pollut. Bull. (2022). https://doi.org/10.1016/j.marpolbul.2022.113559

    Article  Google Scholar 

  11. Verlicchi, P., Al Aukidy, M., Zambello, E.: Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment-A review. Sci. Total Environ. 429, 123–155 (2012). https://doi.org/10.1016/j.scitotenv.2012.04.028

    Article  Google Scholar 

  12. Ihsanullah, I., Khan, M.T., Zubair, M., Bilal, M., Sajid, M.: Removal of pharmaceuticals from water using sewage sludge-derived biochar: a review. Chemosphere 289, 133196 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2021.133196

    Article  Google Scholar 

  13. Nawrat, A.: Pharma and the environment: why pollution remains a worrying trend. https://www.pharmaceutical-technology.com/features/pharma-and-the-environment-pollution-trend/ (2018). Accessed 10 Dec 2021

  14. Vergeynst, L., Haeck, A., De Wispelaere, P., Van Langenhove, H., Demeestere, K.: Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography–magnetic sector mass spectrometry: method quality assessment and application in a Belgian case study. Chemosphere 119, S2–S8 (2015). https://doi.org/10.1016/J.CHEMOSPHERE.2014.03.069

    Article  Google Scholar 

  15. Maculewicz, J., Kowalska, D., Świacka, K., Toński, M., Stepnowski, P., Białk-Bielińska, A., Dołżonek, J.: Transformation products of pharmaceuticals in the environment: their fate, (eco)toxicity and bioaccumulation potential. Sci. Total Environ. 802, 149916 (2022). https://doi.org/10.1016/J.SCITOTENV.2021.149916

    Article  Google Scholar 

  16. Chia, M.A., Lorenzi, A.S., Ameh, I., Dauda, S., Cordeiro-Araújo, M.K., Agee, J.T., Okpanachi, I.Y., Adesalu, A.T.: Susceptibility of phytoplankton to the increasing presence of active pharmaceutical ingredients (APIs) in the aquatic environment: a review. Aquatic Toxicol. 234, 105809 (2021). https://doi.org/10.1016/J.AQUATOX.2021.105809

    Article  Google Scholar 

  17. Yang, X., Nguyen, X.C., Tran, Q.B., Huyen Nguyen, T.T., Ge, S., Nguyen, D.D., Nguyen, V.T., Le, P.C., Rene, E.R., Singh, P., Raizada, P., Ahamad, T., Alshehri, S.M., Xia, C., Kim, S.Y., Le, Q.V.: Machine learning-assisted evaluation of potential biochars for pharmaceutical removal from water. Environ. Res. 214, 113953 (2022). https://doi.org/10.1016/J.ENVRES.2022.113953

    Article  Google Scholar 

  18. Ek Henning, H., Putna-Nīmane, I., Kalinowski, R., Perkola, N., Bogusz, A., Kubliņa, A., Haiba, E., Bārda, I., Karkovska, I., Schütz, J., Mehtonen, J., Siimes, K., Nyhlén, K., Dzintare, L., Äystö, L., Siņics, L., Laht, M., Lehtonen, M., Stapf, M., Leisk, Ü.: Pharmaceuticals in the Baltic Sea Region – emissions, consumption and environmental risks. https://www.researchgate.net/publication/348235264_Pharmaceuticals_in_the_Baltic_Sea_Region_-_emissions_consumption_and_environmental_risks (2020)

  19. Fedorova, G., Golovko, O., Randak, T., Grabic, R.: Storage effect on the analysis of pharmaceuticals and personal care products in wastewater. Chemosphere 111, 55–60 (2014). https://doi.org/10.1016/J.CHEMOSPHERE.2014.02.067

    Article  Google Scholar 

  20. Vieno, N., Tuhkanen, T., Kronberg, L.: Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res. 41(5), 1001–1012 (2007). https://doi.org/10.1016/j.watres.2006.12.017

    Article  Google Scholar 

  21. Al Qarni, H., Collier, P., O’Keeffe, J., Akunna, J.: Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. Environ. Sci. Pollut. Res. 23(13), 13003–13014 (2016). https://doi.org/10.1007/s11356-016-6389-7

    Article  Google Scholar 

  22. Shraim, A., Diab, A., Alsuhaimi, A., Niazy, E., Metwally, M., Amad, M., Sioud, S., Dawoud, A.: Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2012.11.014

    Article  Google Scholar 

  23. Liu, P., Wu, X., Shi, H., Wang, H., Huang, H., Shi, Y., Gao, S.: Contribution of aged polystyrene microplastics to the bioaccumulation of pharmaceuticals in marine organisms using experimental and model analysis. Chemosphere 287, 132412 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2021.132412

    Article  Google Scholar 

  24. Milmo, S.: Pharmaceuticals in the environment. Pharm. Technol. 42(8), 1–2 (2018)

    Google Scholar 

  25. Valavanidis, A., Vlachogianni, T., Loridas, S., Fiotakis, C.: An emerging environmental problem: disposed medicinal active products pharmaceuticals, antibiotics, and disinfectants in the aquatic environment and toxicological considerations. Pharmakeftiki 26(3), 78–98 (2014)

    Google Scholar 

  26. Nicholas, N.: Pros And Cons Of Wastewater Treatment Methods Coagulation And Disinfection. Water Online. https://www.wateronline.com/doc/pros-and-cons-of-wastewater-treatment-methods-coagulation-and-disinfection-0001 (2020). Accessed 12 Dec 2021

  27. Czech, B., Kończak, M., Rakowska, M., Oleszczuk, P.: Engineered biochars from organic wastes for the adsorption of diclofenac, naproxen and triclosan from water systems. J. Clean. Prod. 288, 125686 (2021). https://doi.org/10.1016/j.jclepro.2020.125686

    Article  Google Scholar 

  28. Sukmana, H., Bellahsen, N., Pantoja, F., Hodur, C.: Adsorption and coagulation in wastewater treatment—Review. Prog. Agric. Eng. Sci. 17(1), 49–68 (2021). https://doi.org/10.1556/446.2021.00029

    Article  Google Scholar 

  29. Srivatsav, P., Bhargav, B.S., Shanmugasundaram, V., Arun, J., Gopinath, K.P., Bhatnagar, A.: Biochar as an eco-friendly and economical adsorbent for the removal of colorants (Dyes) from aqueous environment: a review. Water (Switzerland) 12(12), 1–27 (2020). https://doi.org/10.3390/w12123561

    Article  Google Scholar 

  30. Escudero-Curiel, S., Penelas, U., Sanromán, M.Á., Pazos, M.: An approach towards Zero-Waste wastewater technology: fluoxetine adsorption on biochar and removal by the sulfate radical. Chemosphere 268, 129318 (2021). https://doi.org/10.1016/j.chemosphere.2020.129318

    Article  Google Scholar 

  31. Grisales-Cifuentes, C.M., Serna Galvis, E.A., Porras, J., Flórez, E., Torres-Palma, R.A., Acelas, N.: Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. Bioresour. Technol. 326, 124753 (2021). https://doi.org/10.1016/j.biortech.2021.124753

    Article  Google Scholar 

  32. Constro Facilitator. Membrane filtration for wastewater treatment. https://www.constrofacilitator.com/membrane-filtration-for-wastewater-treatment/ (2021). Accessed 25 July 2022

  33. Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R.D., Buelna, G.: Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Biores. Technol. 224, 1–12 (2017). https://doi.org/10.1016/j.biortech.2016.11.042

    Article  Google Scholar 

  34. Deegan, A.M., Shaik, B., Nolan, K., Urell, K., Oelgemöller, M., Tobin, J., Morrissey, A.: Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 8(3), 649–666 (2011). https://doi.org/10.1007/BF03326250

    Article  Google Scholar 

  35. Bilal, M., Ihsanullah, I., Younas, M., Ul, M., Shah, H.: Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review. Sep. Purif. Technol. 278, 1383–5866 (2022). https://doi.org/10.1016/j.seppur.2021.119510

    Article  Google Scholar 

  36. Mansouri, F., Chouchene, K., Roche, N., Ksibi, M.: Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: state of the art and trends. Appl. Sci. 11(14), 6659 (2021). https://doi.org/10.3390/APP11146659

    Article  Google Scholar 

  37. Kyzas, G.Z., Fu, J., Matis, K.A.: The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials 6(11), 5131–5158 (2013). https://doi.org/10.3390/ma6115131

    Article  Google Scholar 

  38. Pigatto, R.S., Franco, D.S.P., Netto, M.S., Carissimi, É., Oliveira, L.F.S., Jahn, S.L., Dotto, G.L.: An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge. J. Environ. Chem. Eng. 8(6), 104546 (2020). https://doi.org/10.1016/J.JECE.2020.104546

    Article  Google Scholar 

  39. Busetty, S.: Environmental Treatment Technologies: Adsorption. In: Hussain, C.M. (ed.) Handbook of Environmental Materials Management. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-73645-7_37

    Chapter  Google Scholar 

  40. Akintola, A.T., Akinlabi, E.T., Masebinu, S.O.: Biochar as an Adsorbent: A Short Overview. In: Daramola, M., Ayeni, A. (eds.) Valorization of Biomass to Value-Added Commodities Green Energy and Technology, pp. 399–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38032-8_19

    Chapter  Google Scholar 

  41. Metslaid, S., Hordo, M., Korjus, H., Kiviste, A., Kangur, A.: Spatio-temporal variability in Scots pine radial growth responses to annual climate fluctuations in hemiboreal forests of Estonia. Agric. For. Meteorol. 252, 283–295 (2018). https://doi.org/10.1016/j.agrformet.2018.01.018

    Article  Google Scholar 

  42. Uusküla, A., Kalda, R., Solvak, M., Jürisson, M., Käärik, M., Fischer, K., Keis, A., Raudvere, U., Vilo, J., Peterson, H., Käärik, E., Metspalu, M., Jürgenson, T., Milani, L., Kolberg, L., Tiit, E.M., Vassil, K.: The 1st year of the COVID-19 epidemic in Estonia: a population-based nationwide sequential/consecutive cross-sectional study. Public Health 205, 150–156 (2022). https://doi.org/10.1016/J.PUHE.2022.02.004

    Article  Google Scholar 

  43. Lember, E., Pachel, K., Loigu, E.: Modelling diclofenac and ibuprofen residues in major estonian seaside cities erki lember. Karin Pachel, Enn Loigu. 2, 1–7 (2016)

    Google Scholar 

  44. Republic of Estonia Agency of Medicines. (n.d.-a). Overview of Estonian medicinal products market (Ravimiamet). https://ravimiamet.ee/en/statistics/statistics-medicines. Accessed 4 July 2021

  45. Republic of Estonia Agency of Medicines. (n.d.-b). The Estonian medicinal products market in fourth quarter 2017: Ravimiamet. https://ravimiamet.ee/en/statistics/statistics-medicines. Accessed 15 July 2021

  46. Vilnius. Baltic Statistics on Medicines 2016–2018. https://www.zva.gov.lv/sites/default/files/2020-01/Baltic Statistics_2016-2018.pdf(2019). Accessed 15 July 2021

  47. Helcom. Pharmaceuticals in the aquatic environment of the Baltic Sea region A status report International Initiative on Water Quality-IIWQ (Issue 149). (2017).

  48. Niemuth, N.J., Jordan, R., Crago, J., Blanksma, C., Johnson, R., Klaper, R.D.: Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environ. Toxicol. Chem. 34(2), 291–296 (2015). https://doi.org/10.1002/etc.2793

    Article  Google Scholar 

  49. International Diabetes Federation. (n.d.). Diabetes facts & figures. https://idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html. Accessed 4 July 2021

  50. International Diabetes Foundation Europe Members. (n.d.). https://idf.org/our-network/regions-members/europe/members/131-estonia.html. Accessed 4 July 2021

  51. International Diabetes Federation. IDF DIABETES ATLAS 9th Edition (Europe). www.diabetesatlas.org (2019). Accessed 27 July 2022

  52. Kõrgmaa, V., Laht, M., Rebane, R., Lember, E., Pachel, K., Kriipsalu, M., Tenno, T., Iital, A.: Removal of hazardous substances in municipal wastewater treatment plants. Water Sci. Technol. 81(9), 2011–2022 (2020). https://doi.org/10.2166/wst.2020.264

    Article  Google Scholar 

  53. Kõrgmaa, V., Tenno, T., Kivirüt, A., Kriipsalu, M., Gross, M., Tamm, P., Karabelnik, K., Terase, H., Värk, V., Lepik, N., Pachel, K., Iital, A.: A novel method for rapid assessment of the performance and complexity of small wastewater treatment plants. Proc. Est. Acad. Sci. 68(1), 32–42 (2019). https://doi.org/10.3176/proc.2019.1.03

    Article  Google Scholar 

  54. Tooming, A.: Estonian experience in the water management. https://unece.org/fileadmin/DAM/env/documents/2012/wat/workshops/Nordic_Baltic_Seminar_Oslo/4a.Estonia_final_water_management_sewage.pdf (2011). Accessed 27 Dec 2022

  55. Bimová, P., Roupcová, P., Klouda, K., Matejová, L., Stanová, A.V., Grabicová, K., Grabic, R., Majová, V., Híveš, J., Špalková, V., Gemeiner, P., Celec, P., Konecná, B., Bírošová, L., Krahulcová, M., Mackulak, T.: Biochar – An efficient sorption material for the removal of pharmaceutically active compounds, DNA and RNA fragments from wastewater. J. Environ. Chem. Eng. 9(4), 105746 (2021). https://doi.org/10.1016/J.JECE.2021.105746

    Article  Google Scholar 

  56. Zubair, M., Ihsanullah, I., Abdul Aziz, H., Azmier Ahmad, M., Al-Harthi, M.A.: Sustainable wastewater treatment by biochar/layered double hydroxide composites: progress, challenges, and outlook. Bioresour. Technol. 319, 124128 (2021). https://doi.org/10.1016/j.biortech.2020.124128

    Article  Google Scholar 

  57. Shackley, S., Hammond, J., Gaunt, J., Ibarrola, R.: The feasibility and costs of biochar deployment in the UK. Carbon Manag. 2(3), 335–356 (2011). https://doi.org/10.4155/cmt.11.22

    Article  Google Scholar 

  58. Hanoğlu, A., Çay, A., Yanık, J.: Production of biochars from textile fibres through torrefaction and their characterisation. Energy 166, 664–673 (2019). https://doi.org/10.1016/j.energy.2018.10.123

    Article  Google Scholar 

  59. Acharya, B., Dutta, A., Minaret, J.: Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Assess. 12, 26–37 (2015). https://doi.org/10.1016/j.seta.2015.08.003

    Article  Google Scholar 

  60. Bergman, P.C.A., Boersma, A.R., Zwart, R.W.R., Kiel, J.H.A.: “Torrefaction for biomass co-firing in existing coal-fired power stations.” [Online]. Available: https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C--05-013 (2005). Accessed 29 Dec 2018

  61. Zhang, D., Wang, F., Zhang, A., Yi, W., Li, Z., Shen, X.: Effect of pretreatment on chemical characteristic and thermal degradation behavior of corn stalk digestate : comparison of dry and wet torrefaction. Bioresour. Technol. 275, 239–246 (2019). https://doi.org/10.1016/j.biortech.2018.12.044

    Article  Google Scholar 

  62. Budai, A., Wang, L., Gronli, M., Strand, L.T., Antal, M.J., Abiven, S., Dieguez-Alonso, A., Anca-Couce, A., Rasse, D.P.: Surface properties and chemical composition of corncob and miscanthus biochars: Effects of production temperature and method. J. Agric. Food Chem. 62(17), 3791–3799 (2014). https://doi.org/10.1021/jf501139f

    Article  Google Scholar 

  63. Xu, X., Tu, R., Sun, Y., Li, Z., Jiang, E.: Influence of biomass pretreatment on upgrading of bio-oil: comparison of dry and hydrothermal torrefaction. Biores. Technol. 262, 261–270 (2018). https://doi.org/10.1016/j.biortech.2018.04.037

    Article  Google Scholar 

  64. Soh, M., Khaerudini, D.S., Chew, J.J., Sunarso, J.: Wet torrefaction of empty fruit bunches (EFB) and oil palm trunks (OPT): effects of process parameters on their physicochemical and structural properties. S. Afr. J. Chem. Eng. 35, 126–136 (2021). https://doi.org/10.1016/j.sajce.2020.09.004

    Article  Google Scholar 

  65. Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A., Brown, R.C.: Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustain. Energy 28(3), 386–396 (2009). https://doi.org/10.1002/ep.10378

    Article  Google Scholar 

  66. Benedetti, V., Patuzzi, F., Baratieri, M.: Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energy 227(2017), 92–99 (2018). https://doi.org/10.1016/j.apenergy.2017.08.076

    Article  Google Scholar 

  67. Lee, J., Sarmah, A.K., Kwon, E.E.: Production and Formation of Biochar. In: Ok, Y.S., Daniel, C.W. (eds.) Tsang Biochar from Biomass and Waste, pp. 3–18. Elsevier, Amsterdam (2019). https://doi.org/10.1016/B978-0-12-811729-3.00001-7

    Chapter  Google Scholar 

  68. Yaman, S.: Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage. 45(5), 651–671 (2004). https://doi.org/10.1016/S0196-8904(03)00177-8

    Article  Google Scholar 

  69. Ippolito, J.A., Laird, D.A., Busscher, W.J.: Environmental benefits of biochar. J. Environ. Qual. 41(4), 967 (2012). https://doi.org/10.2134/jeq2012.0151

    Article  Google Scholar 

  70. Odinga, E.S., Gudda, F.O., Waigi, M.G., Wang, J., Gao, Y.: Occurrence, formation and environmental fate of polycyclic aromatic hydrocarbons in biochars. Fundam. Res. 1(3), 296–305 (2021). https://doi.org/10.1016/J.FMRE.2021.03.003

    Article  Google Scholar 

  71. Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006). https://doi.org/10.1021/ef0502397

    Article  Google Scholar 

  72. Laird, D.A., Brown, R.C., Amonette, J.E., Lehmann, J.: Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod. Biorefin. 3(5), 547–562 (2009). https://doi.org/10.1002/bbb.169

    Article  Google Scholar 

  73. Leng, L., Huang, H., Li, H., Li, J., Zhou, W.: Biochar stability assessment methods: a review. Sci. Total Environ. 647, 210–222 (2019). https://doi.org/10.1016/j.scitotenv.2018.07.402

    Article  Google Scholar 

  74. Onay, O., Kockar, O.M.: Slow, fast and flash pyrolysis of rapeseed. Renew. Energy 28(15), 2417–2433 (2003). https://doi.org/10.1016/S0960-1481(03)00137-X

    Article  Google Scholar 

  75. Adesemuyi, F.M., Adebayo, M.A., Akinola, A.O., Olasehinde, E.F., Adewole, K.A., Lajide, L.: Preparation and characterisation of biochars from elephant grass and their utilisation for aqueous nitrate removal: effect of pyrolysis temperature. J. Environ. Chem. Eng (2020). https://doi.org/10.1016/j.jece.2020.104507

    Article  Google Scholar 

  76. Rathnayake, D., Maziarka, P., Ghysels, S., Mašek, O., Sohi, S., Ronsse, F.: How to trace back an unknown production temperature of biochar from chemical characterization methods in a feedstock independent way. J. Anal. Appl. Pyrolysis 151, 104926 (2020). https://doi.org/10.1016/j.jaap.2020.104926

    Article  Google Scholar 

  77. Gazulla, M.F., Rodrigo, M., Orduña, M., Gómez, C.M.: Determination of carbon, hydrogen, nitrogen and sulfur in geological materials using elemental analysers. Geostand. Geoanal. Res. 36(2), 201–217 (2012). https://doi.org/10.1111/J.1751-908X.2011.00140.X

    Article  Google Scholar 

  78. Parsa, M., Nourani, M., Baghdadi, M., Hosseinzadeh, M., Pejman, M.: Biochars derived from marine macroalgae as a mesoporous by-product of hydrothermal liquefaction process: characterization and application in wastewater treatment. J. Water Process. Eng. 32, 100942 (2019). https://doi.org/10.1016/j.jwpe.2019.100942

    Article  Google Scholar 

  79. Wang, P., Liu, X., Yu, B., Wu, X., Xu, J., Dong, F., Zheng, Y.: Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution. Sci. Total Environ. 702(2), 134767 (2020). https://doi.org/10.1016/j.scitotenv.2019.134767

    Article  Google Scholar 

  80. Sotoudehnia, F., Baba Rabiu, A., Alayat, A., McDonald, A.G.: Characterization of bio-oil and biochar from pyrolysis of waste corrugated cardboard. J. Anal. Appl. Pyrolysis 145, 104722 (2020). https://doi.org/10.1016/j.jaap.2019.104722

    Article  Google Scholar 

  81. Tong, W., Cai, Z., Liu, Q., Ren, S., Kong, M.: Evaluation of biochar combustion reactivity under pyrolysis temperature: microstructure characterization, kinetics and thermodynamics. J. Energy Inst. 93(5), 1914–1923 (2020). https://doi.org/10.1016/j.joei.2020.04.006

    Article  Google Scholar 

  82. ThermoFisher Sientific. EDX Analysis with SEM: How Does it Work? - Accelerating Microscopy. https://www.thermofisher.com/blog/microscopy/edx-analysis-with-sem-how-does-it-work/ (2020). Accessed 25 Nov 2022

  83. Chen, G., Taherymoosavi, S., Cheong, S., Yin, Y., Akter, R., Marjo, C.E., Rich, A.M., Mitchell, D.R.G., Fan, X., Chew, J., Pan, G., Li, L., Bian, R., Horvat, J., Mohammed, M., Munroe, P., Joseph, S.: Advanced characterization of biomineralization at plaque layer and inside rice roots amended with iron-and silica-enhanced biochar. Sci. Rep. 11, 159 (2021). https://doi.org/10.1038/s41598-020-80377-z

    Article  Google Scholar 

  84. Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., Yu, G.: Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS ONE (2013). https://doi.org/10.1371/JOURNAL.PONE.0065949

    Article  Google Scholar 

  85. De Sousa, D.V., Guimarães, L.M., Félix, J.F., Ker, J.C., Schaefer, C.E.R.G., Rodet, M.J.: Dynamic of the structural alteration of biochar in ancient Anthrosol over a long timescale by Raman spectroscopy. PLoS ONE 15(3), e0229447 (2020). https://doi.org/10.1371/JOURNAL.PONE.0229447

    Article  Google Scholar 

  86. Escudero-Curiel, S., Acevedo-García, V., Sanromán, M.Á., Pazos, M.: Eco-approach for pharmaceutical removal: thermochemical waste valorisation, biochar adsorption and electro-assisted regeneration. Electrochim. Acta 389, 138694 (2021). https://doi.org/10.1016/J.ELECTACTA.2021.138694

    Article  Google Scholar 

  87. Solanki, A., Boyer, T.H.: Pharmaceutical removal in synthetic human urine using biochar. Environ. Sci.: Water Res. Technol. 3(3), 553–565 (2017). https://doi.org/10.1039/C6EW00224B

    Article  Google Scholar 

  88. Oliveira, F.R., Patel, A.K., Jaisi, D.P., Adhikari, S., Lu, H., Khanal, S.K.: Environmental application of biochar: current status and perspectives. Biores. Technol. 246, 110–122 (2017). https://doi.org/10.1016/j.biortech.2017.08.122

    Article  Google Scholar 

  89. Oginni, O., Singh, K.: Effect of carbonization temperature on fuel and caffeine adsorption characteristics of white pine and Norway spruce needle derived biochars. Ind. Crops Prod. 162, 113261 (2021). https://doi.org/10.1016/j.indcrop.2021.113261

    Article  Google Scholar 

  90. Borah, A.: Review of the emerging use of activated carbon or biochar media as stormwater source controls. https://sustain.ubc.ca/sites/default/files/2020-16_Review of activated charcoal and biochar_Borah.pdf (2020). Accessed 20 Nov 2021

  91. Crini, G., Lichtfouse, E., Wilson, L.D., Morin-Crini, N.: Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 17(1), 195–213 (2019). https://doi.org/10.1007/S10311-018-0786-8/TABLES/2

    Article  Google Scholar 

  92. Shirani, Z., Song, H., Bhatnagar, A.: Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci. Total Environ. 745, 140789 (2020). https://doi.org/10.1016/j.scitotenv.2020.140789

    Article  Google Scholar 

  93. Thompson, K.A., Shimabuku, K.K., Kearns, J.P., Knappe, D.R.U., Summers, R.S., Cook, S.M.: Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environ. Sci. Technol. 50(20), 11253–11262 (2016). https://doi.org/10.1021/ACS.EST.6B03239

    Article  Google Scholar 

  94. Xiao, L., Feng, L., Yuan, G., Wei, J.: Low-cost field production of biochars and their properties. Environ. Geochem. Health 42(6), 1569–1578 (2019). https://doi.org/10.1007/S10653-019-00458-5

    Article  Google Scholar 

  95. Statistics Estonia. Growth in life expectancy has slowed down, but Estonian people live a longer healthy life. https://www.stat.ee/en/node/183291 (2021). Accessed 21 July 2022

  96. American Chemical Society. (n.d.). Ibuprofen. https://www.acs.org/content/acs/en/molecule-of-the-week/archive/i/ibuprofen.html. Accessed 13 Dec 2021

  97. Bian, X., Jiang, L., Gan, Z., Guan, X., Zhang, L., Cai, L., Hu, X.: A glimepiride-metformin multidrug crystal: synthesis, crystal structure analysis, and physicochemical properties. Molecules (2019). https://doi.org/10.3390/MOLECULES24203786

    Article  Google Scholar 

  98. Liu, Y.J., Hu, C.Y., Lo, S.L.: Comparison of the degradation of multiple amine-containing pharmaceuticals during electroindirect oxidation and electrochlorination processes in continuous system. Water Res. 203, 117517 (2021). https://doi.org/10.1016/J.WATRES.2021.117517

    Article  Google Scholar 

  99. National Library of Medicine (PubChem). (n.d.-a). Diclofenac. https://pubchem.ncbi.nlm.nih.gov/compound/diclofenac#section=1D-NMR-Spectra. Accessed 13 Dec 2021

  100. National Library of Medicine (PubChem). (n.d.-b). Ibuprofen. https://pubchem.ncbi.nlm.nih.gov/compound/Ibuprofen. Accessed 13 Dec 2021

  101. National Library of Medicine (PubChem). (n.d.-c). Metformin. https://pubchem.ncbi.nlm.nih.gov/compound/metformin#section=3D-Conformer. Accessed 13 Dec 2021

  102. Koester, V.: What is HPLC? - ChemistryViews. https://www.chemistryviews.org/details/education/9464911/What_is_HPLC/ (2016). Accessed 3 Jan 2023

  103. Seneca: Alkaloid Chemistry. In: Aniszewski, T. (ed.) Alkaloids—Secrets of Life, pp. 61–139. Elsevier, Amsterdam (2007). https://doi.org/10.1016/B978-044452736-3/50004-0

    Chapter  Google Scholar 

  104. Mccormick, J.P., Carrel, J.E.: Cantharidin Biosynthesis and Function in Meloid Beetles. In: Prestwich, G.D., Blomquist, G.J. (eds.) Pheromone Biochemistry, pp. 307–350. Academic Press, Cambridge (1987). https://doi.org/10.1016/B978-0-12-564485-3.50015-4

    Chapter  Google Scholar 

  105. Tran, H.N., Tomul, F., Ha, N.T., Nguyen, D.T., Lima, E.C., Le, G.T., Chang, C.T., Masindi, V., Woo, S.H.: Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism. J. Hazard. Mater. 394, 122255 (2020)

    Article  Google Scholar 

  106. Paunovic, O., Pap, S., Maletic, S., Taggart, M.A., Boskovic, N., Turk Sekulic, M.: Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. J. Colloid Interface Sci. 547, 350–360 (2019). https://doi.org/10.1016/j.jcis.2019.04.011

    Article  Google Scholar 

  107. Chakraborty, P., Show, S., Ur Rahman, W., Halder, G.: Linearity and non-linearity analysis of isotherms and kinetics for ibuprofen remotion using superheated steam and acid modified biochar. Process Saf. Environ. Prot. 126, 193–204 (2019). https://doi.org/10.1016/j.psep.2019.04.011

    Article  Google Scholar 

  108. Mondal, S., Aikat, K., Halder, G.: Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng. 92, 158–172 (2016). https://doi.org/10.1016/j.ecoleng.2016.03.022

    Article  Google Scholar 

  109. Mondal, S., Bobde, K., Aikat, K., Halder, G.: Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies. J. Environ. Manage. 182, 581–594 (2016). https://doi.org/10.1016/j.jenvman.2016.08.018

    Article  Google Scholar 

  110. Xu, D., Li, Z., Wang, P., Bai, W., Wang, H.: Aquatic plant-derived biochars produced in different pyrolytic conditions: spectroscopic studies and adsorption behavior of diclofenac sodium in water media. Sustain. Chem. Pharm. 17, 100275 (2020). https://doi.org/10.1016/j.scp.2020.100275

    Article  Google Scholar 

  111. Rathod, R.H., Chaudhari, S.R., Patil, A.S., Shirkhedkar, A.A.: Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: analysis of drugs and pharmaceutical formulations. Futur. J. Pharm. Sci. 5(1), 1–26 (2019). https://doi.org/10.1186/S43094-019-0007-8

    Article  Google Scholar 

  112. EAG Laboratories. Ultra-High-Performance Liquid Chromatography (UHPLC). https://www.eag.com/techniques/chromatography/ultra-high-performance-liquid-chromatography-uhplc/ (2023). Accessed 3 Jan 2023

  113. Taleuzzaman, M., Ali, S., Gilani, S., Imam, S., Hafeez, A.: Ultra performance liquid chromatography (UPLC)—A review. J. Anal. Pharm. Chem. 2(6), 1056 (2015)

    Google Scholar 

  114. Creative Proteomics. Ultra Performance Liquid Chromatography (UPLC) Based Analysis Services - Creative Proteomics. https://www.creative-proteomics.com/technology/ultra-performance-liquid-chromatography-uplc-based-analysis-service.htm (2023). Accessed 3 Jan 2023

  115. Dyad Labs. (n.d.). HPLC vs. UPLC. In D. https://dyadlabs.com/wp-content/uploads/2018/10/hplc_uplc_onesheet.pdf. Accessed 3 Jan 2023

  116. Wu, Y., Engen, J.R., Hobbins, W.B.: Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J. Am. Soc. Mass Spectrom. 17(2), 163–167 (2006). https://doi.org/10.1016/J.JASMS.2005.10.009

    Article  Google Scholar 

  117. Wu, Q., Zhang, Y., Cui, M., Liu, H., Liu, H., Zheng, Z., Zheng, W., Zhang, C., Wen, D.: Pyrolyzing pharmaceutical sludge to biochar as an efficient adsorbent for deep removal of fluoroquinolone antibiotics from pharmaceutical wastewater: performance and mechanism. J. Hazard. Mater. (2021). https://doi.org/10.1016/J.JHAZMAT.2021.127798

    Article  Google Scholar 

  118. Pratiwi, R.A., Nandiyanto, A.B.D.: How to read and interpret UV-VIS spectrophotometric results in determining the structure of chemical compounds. Indonesian J. Educ. Res. Technol. 2(1), 1–20 (2022). https://doi.org/10.17509/ijert.v2i1.35171

    Article  Google Scholar 

  119. Tom, J.: UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications | Technology Networks. https://www.technologynetworks.com/analysis/articles/uv-vis-spectroscopy-principle-strengths-and-limitations-and-applications-349865 (2021). Accessed 3 Jan 2023

  120. Singh, V., Srivastava, V.C.: Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant. Environ. Pollut. 259, 113822 (2020). https://doi.org/10.1016/j.envpol.2019.113822

    Article  Google Scholar 

  121. Maged, A., Dissanayake, P.D., Yang, X., Pathirannahalage, C., Bhatnagar, A., Ok, Y.S.: New mechanistic insight into rapid adsorption of pharmaceuticals from water utilizing activated biochar. Environ. Res. 202, 111693 (2021). https://doi.org/10.1016/J.ENVRES.2021.111693

    Article  Google Scholar 

  122. Chakraborty, P., Singh, S.D., Gorai, I., Singh, D., Rahman, W.U., Halder, G.: Explication of physically and chemically treated date stone biochar for sorptive remotion of ibuprofen from aqueous solution. J. Water Process. Eng. 33, 101022 (2020). https://doi.org/10.1016/j.jwpe.2019.101022

    Article  Google Scholar 

  123. Moreno-Pérez, J., Pauletto, P.S., Cunha, A.M., Bonilla-Petriciolet, Á., Salau, N.P.G., Dotto, G.L.: Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite. Colloids Surf. A Physicochem. Eng. Asp. 614, 126170 (2021). https://doi.org/10.1016/j.colsurfa.2021.126170

    Article  Google Scholar 

  124. Quesada, H.B., De Araújo, T.P., Cusioli, L.F., De Barros, M.A.S.D., Gomes, R.G., Bergamasco, R.: Evaluation of novel activated carbons from chichá-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture. J. Environ. Chem. Eng. 9(1), 104914 (2021). https://doi.org/10.1016/j.jece.2020.104914

    Article  Google Scholar 

  125. Shi, J., Guo, C., Lei, C., Liu, Y., Hou, X., Zheng, X., Hu, Q.: High-performance biochar derived from the residue of Chaga mushroom (Inonotus obliquus) for pollutants removal. Bioresour. Technol. (2021). https://doi.org/10.1016/J.BIORTECH.2021.126268

    Article  Google Scholar 

  126. Liyanage, A.S., Canaday, S., Pittman, C.U., Jr., Mlsna, T.: Rapid remediation of pharmaceuticals from wastewater using magnetic Fe3O4/Douglas for biochar adsorbents. Chemosphere 258, 127336 (2020)

    Article  Google Scholar 

  127. Keerthanan, S., Bhatnagar, A., Mahatantila, K., Jayasinghe, C., Ok, Y.S., Vithanage, M.: Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environ. Technol. Innov. 19, 100847 (2020). https://doi.org/10.1016/j.eti.2020.100847

    Article  Google Scholar 

  128. Mahmoud, M.E., El-Ghanam, A.M., Saad, S.R., Mohamed, R.H.A.: Promoted removal of metformin hydrochloride anti-diabetic drug from water by fabricated and modified nanobiochar from artichoke leaves. Sustain. Chem. Pharm. 18, 100336 (2020). https://doi.org/10.1016/j.scp.2020.100336

    Article  Google Scholar 

  129. Huang, X., Liu, Y., Liu, S., Li, Z., Tan, X., Ding, Y., Zeng, G., Xu, Y., Zeng, W., Zheng, B.: Removal of metformin hydrochloride by: Alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide. RSC Adv. 6(83), 79275–79284 (2016). https://doi.org/10.1039/c6ra08365j

    Article  Google Scholar 

  130. De Bhowmick, G., Briones, R.M., Thiele-Bruhn, S., Sen, R., Sarmah, A.K.: Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment. Environ. Pollut. 292, 118256 (2022). https://doi.org/10.1016/J.ENVPOL.2021.118256

    Article  Google Scholar 

  131. dos Santos, G.E.D.S., Ide, A.H., Duarte, J.L.S., McKay, G., Silva, A.O.S., Meili, L.: Adsorption of anti-inflammatory drug diclofenac by MgAl/layered double hydroxide supported on Syagrus coronata biochar. Powder Technol. 364, 229–240 (2020). https://doi.org/10.1016/j.powtec.2020.01.083

    Article  Google Scholar 

  132. Lonappan, L., Rouissi, T., Liu, Y., Brar, S.K., Surampalli, R.Y.: Removal of diclofenac using microbiochar fixed-bed column bioreactor. J. Environ. Chem. Eng. 7(1), 102894 (2019). https://doi.org/10.1016/j.jece.2019.102894

    Article  Google Scholar 

  133. Correa-Navarro, Y.M., Giraldo, L., Moreno-Piraján, J.C.: Dataset for effect of pH on caffeine and diclofenac adsorption from aqueous solution onto fique bagasse biochars. Data Brief 25, 104111 (2019). https://doi.org/10.1016/j.dib.2019.104111

    Article  Google Scholar 

  134. He, L., Lv, L., Pillai, S.C., Wang, H., Xue, J., Ma, Y., Liu, Y., Chen, Y., Wu, L., Zhang, Z., Yang, L.: Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Sci. Total Environ. 783, 146974 (2021). https://doi.org/10.1016/j.scitotenv.2021.146974

    Article  Google Scholar 

  135. Zhang, H., Tu, Y.J., Duan, Y.P., Liu, J., Zhi, W., Tang, Y., Xiao, L.S., Meng, L.: Production of biochar from waste sludge/leaf for fast and efficient removal of diclofenac. J. Mol. Liq. 299, 112193 (2020). https://doi.org/10.1016/j.molliq.2019.112193

    Article  Google Scholar 

  136. Chakraborty, P., Banerjee, S., Kumar, S., Sadhukhan, S., Halder, G.: Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell: isotherm, kinetics, thermodynamics and cost estimation. Process Saf. Environ. Prot. 118, 10–23 (2018). https://doi.org/10.1016/j.psep.2018.06.015

    Article  Google Scholar 

  137. Chakraborty, P., Show, S., Banerjee, S., Halder, G.: Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: Performance evaluation and cost estimation. J. Environ. Chem. Eng. 6(4), 5287–5300 (2018). https://doi.org/10.1016/j.jece.2018.08.017

    Article  Google Scholar 

  138. Show, S., Mukherjee, S., Devi, M.S., Karmakar, B., Halder, G.: Linear and non-linear analysis of Ibuprofen riddance efficacy by Terminalia catappa active biochar: equilibrium, kinetics, safe disposal, reusability and cost estimation. Process Saf. Environ. Prot. 147, 942–964 (2021). https://doi.org/10.1016/j.psep.2021.01.024

    Article  Google Scholar 

  139. Ocampo-Perez, R., Padilla-Ortega, E., Medellin-Castillo, N.A., Coronado-Oyarvide, P., Aguilar-Madera, C.G., Segovia-Sandoval, S.J., Flores-Ramírez, R., Parra-Marfil, A.: Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling. Sci. Total Environ. 655, 1397–1408 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.283

    Article  Google Scholar 

  140. Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D., Mlsna, T.: Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 265, 219–227 (2015). https://doi.org/10.1016/j.cej.2014.12.006

    Article  Google Scholar 

  141. Puga, A., Moreira, M.M., Figueiredo, S.A., Delerue-Matos, C., Pazos, M., Rosales, E., Sanromán, M.Á.: Electro-Fenton degradation of a ternary pharmaceutical mixture and its application in the regeneration of spent biochar. J. Electroanal. Chem. 886, 115135 (2021). https://doi.org/10.1016/J.JELECHEM.2021.115135

    Article  Google Scholar 

  142. World Health Organization (WHO). (n.d.). Data and statistics. https://www.euro.who.int/en/health-topics/noncommunicable-diseases/diabetes/data-and-statistics. Accessed 4 July 2021

Download references

Acknowledgements

The authors would love to acknowledge Oyepeju Abioye for assisting in the proofreading of this manuscript.

Funding

This research did not obtain any donation from any organization in the community, business, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ATA, YAA: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Original draft; Writing—review & editing.

Corresponding authors

Correspondence to Ayooluwa Tomiwa Akintola or Ayankoya Yemi Ayankunle.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The Table 1 has been revised.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akintola, A.T., Ayankunle, A.Y. Improving Pharmaceuticals Removal at Wastewater Treatment Plants Using Biochar: A Review. Waste Biomass Valor 14, 2433–2458 (2023). https://doi.org/10.1007/s12649-023-02070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02070-2

Keywords

Navigation