Skip to main content
Log in

Feather Meal as a Source of Peptides with Antioxidant Activity from Enzymatic Hydrolysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Feather is the most abundant keratinous material in nature. This by-product of animal origin has about 80–90% of crude protein. This work aimed to maximize the enzymatic hydrolysis of feather meal using the proteolytic enzyme from Bacillus sp. P45 and evaluate the antioxidant capacity of different fractions of the hydrolysate. Enzymatic hydrolysis was maximized using a central composite rotatable design (CCRD) 24, where the effects of the variables CaCl2 concentration (0–100 mmol/L), temperature (35–55 °C), enzyme/substrate ratio (600–6000 U/g-protein), and substrate protein concentration (10–40 g/L) were estimated on the responses degree of hydrolysis (DH) and protein recovery (PR). The highest values of DH and PR were obtained when the hydrolysis was performed with 50 mmol/L of CaCl2, 50 °C, 6000 U/g-protein, and substrate protein concentration of 10 g/L. Hydrolysate presented DH of 8.4% and PR of 37.5% at 6 h of reaction. The obtained peptides were separated by molecular weight through a sequential ultrafiltration process in the membranes of 10 and 3 kDa, and the antioxidant activities of the different fractions were analyzed. The fraction < 3 kDa showed a higher capacity to sequester radicals ABTS⋅+ (90.20 μmol TE/g) and peroxyl (1892.47 μmol TE/g). This study shows the potential of Bacillus sp. P45 in hydrolyzing feather meal, resulting in peptides with antioxidant activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Tesfaye, T., Sithole, B., Ramjugernath, D.: Valorisation of chicken feathers: a review on recycling and recovery route-current status and future prospects. Clean Technol. Environ. Policy 19, 2363–2378 (2017). https://doi.org/10.1007/s10098-017-1443-9

    Article  Google Scholar 

  2. Casadesús, M., Macanás, J., Colom, X., Cañavate, J., Álvarez, M.D., Garrido, N., Molins, G., Carrillo, F.: Effect of chemical treatments and additives on properties of chicken feathers thermoplastic biocomposites. J. Compos. Mater. 52, 3637–3653 (2018). https://doi.org/10.1177/0021998318766652

    Article  Google Scholar 

  3. Callegaro, K., Welter, N., Daroit, D.J.: Feathers as bioresource: microbial conversion into bioactive protein hydrolysates. Process Biochem. 75, 1–9 (2018). https://doi.org/10.1016/j.procbio.2018.09.002

    Article  Google Scholar 

  4. USDA: Livestock and Poultry: World Markets and Trade: Brazil Meat Exports Continue to Grow. (2021)

  5. Tesfaye, T., Sithole, B., Ramjugernath, D., Chunilall, V.: Valorisation of chicken feathers: characterisation of chemical properties. Waste Manag. 68, 626–635 (2017). https://doi.org/10.1016/j.wasman.2017.06.050

    Article  Google Scholar 

  6. Brandelli, A., Sala, L., Kalil, S.J.: Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res. Int. 73, 3–12 (2015). https://doi.org/10.1016/j.foodres.2015.01.015

    Article  Google Scholar 

  7. Tavano, O.L.: Protein hydrolysis using proteases: an important tool for food biotechnology. J. Mol. Catal. B 90, 1–11 (2013)

    Article  Google Scholar 

  8. Cheison, S.C., Kulozik, U.: Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: a review. Crit. Rev. Food Sci. Nutr. 57, 418–453 (2017). https://doi.org/10.1080/10408398.2014.959115

    Article  Google Scholar 

  9. Wasswa, J., Tang, J., Gu, X., Yuan, X.: Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chem. 104, 1698–1704 (2007). https://doi.org/10.1016/j.foodchem.2007.03.044

    Article  Google Scholar 

  10. Jemil, I., Abdelhedi, O., Nasri, R., Mora, L., Jridi, M., Aristoy, M.C., Toldrá, F., Nasri, M.: Novel bioactive peptides from enzymatic hydrolysate of Sardinelle (Sardinella aurita) muscle proteins hydrolysed by Bacillus subtilis A26 proteases. Food Res. Int. 100, 121–133 (2017). https://doi.org/10.1016/j.foodres.2017.06.018

    Article  Google Scholar 

  11. Spellman, D., O’Cuinn, G., FitzGerald, R.J.: Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chem. 114, 440–446 (2009). https://doi.org/10.1016/j.foodchem.2008.09.067

    Article  Google Scholar 

  12. Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., Ashraf, M.: Microbial proteases applications. Front. Bioeng. Biotechnol. 7, 1–20 (2019). https://doi.org/10.3389/fbioe.2019.00110

    Article  Google Scholar 

  13. Rao, M., Tanskale, A., Ghatge, M., Deshpande, V.: Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635 (1998). https://doi.org/10.1016/S0168-6445(99)00006-6

    Article  Google Scholar 

  14. Daroit, D.J., Corrêa, A.P.F., Brandelli, A.: Keratinolytic potential of a novel Bacillus sp P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodeterior. Biodegrad. 63, 358–363 (2009). https://doi.org/10.1016/j.ibiod.2008.11.008

    Article  Google Scholar 

  15. Olagunju, A.I., Omoba, O.S., Enujiugha, V.N., Alashi, A.M., Aluko, R.E.: Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: an in vitro study. LWT Food Sci. Technol. 97, 269–278 (2018). https://doi.org/10.1016/j.lwt.2018.07.003

    Article  Google Scholar 

  16. Zhang, M., Mu, T.H.: Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 43, 92–101 (2017). https://doi.org/10.1016/j.ifset.2017.08.001

    Article  Google Scholar 

  17. Wang, P., Lin, Y., Wu, H., Lin, J., Chen, Y., Hamzah, S.S., Zeng, H., Zhang, Y., Hu, J.: Preparation of antioxidant peptides from hairtail surimi using hydrolysis and evaluation of its antioxidant stability. Food Sci. Technol. 2061, 1–11 (2020). https://doi.org/10.1590/fst.23719

    Article  Google Scholar 

  18. Gómez-Sampedro, L.J., Zapata-Montoya, J.E.: Obtaining of antioxidant peptide from bovine plasma hydrolysates and effect of the degree of hydrolysis on antioxidant capacity. Rev. Mex. Ing. Quim. 15, 101–109 (2016)

    Google Scholar 

  19. Zhang, J., Wang, J., Zhao, Y., Li, J., Liu, Y.: Study on the interaction between calcium ions and alkaline protease of Bacillus. Int. J. Biol. Macromol. 124, 121–130 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.198

    Article  Google Scholar 

  20. Daroit, D.J., Sant’Anna, V., Brandelli, A.: Kinetic stability modelling of keratinolytic protease P45: influence of temperature and metal ions. Appl. Biochem. Biotechnol. 165, 1740–1753 (2011). https://doi.org/10.1007/s12010-011-9391-z

    Article  Google Scholar 

  21. Bertsch, A., Coello, N.: A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Biores. Technol. 96, 1703–1708 (2005). https://doi.org/10.1016/j.biortech.2004.12.026

    Article  Google Scholar 

  22. Daroit, D.J., Corrêa, A.P.F., Brandelli, A.: Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. Int. Biodeterior. Biodegrad. 65, 45–51 (2011). https://doi.org/10.1016/j.ibiod.2010.04.014

    Article  Google Scholar 

  23. Adler-Nissen, J., Eriksen, S., Olsen, H.S.: Improvement of the functionality of vegetable proteins by controlled enzymatic hydrolysis. Qualitas Plantarum Plant Foods Hum. Nutr. 32, 411–423 (1983). https://doi.org/10.1007/BF01091198

    Article  Google Scholar 

  24. Zaraî Jaouadi, N., Jaouadi, B., Aghajari, N., Bejar, S.: The overexpression of the SAPB of Bacillus pumilus CBS and mutated sapB-L31I/T33S/N99Y alkaline proteases in Bacillus subtilis DB430: new attractive properties for the mutant enzyme. Biores. Technol. 105, 142–151 (2012). https://doi.org/10.1016/j.biortech.2011.11.115

    Article  Google Scholar 

  25. Kirk, P.L.: Kjeldahl method for total nitrogen. Anal. Chem. 22, 354–358 (1950). https://doi.org/10.1021/ac60038a038

    Article  Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1007/978-94-007-0753-5_100521

    Article  Google Scholar 

  27. Re, R., Pelligrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. J. Food Sci. Technol. 26, 1231–1237 (1999). https://doi.org/10.1016/j.indcrop.2017.04.056

    Article  Google Scholar 

  28. Rodrigues, E., Mariutti, L.R.B., Faria, A.F., Mercadante, A.Z.: Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Food Chem. 134, 704–711 (2012). https://doi.org/10.1016/j.foodchem.2012.02.163

    Article  Google Scholar 

  29. Cao, Z.J., Zhang, Q., Wei, D.K., Chen, L., Wang, J., Zhang, X.Q., Zhou, M.H.: Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. J. Ind. Microbiol. Biotechnol. 36, 181–188 (2009). https://doi.org/10.1007/s10295-008-0469-8

    Article  Google Scholar 

  30. Smith, C.A., Toogood, H.S., Baker, H.M., Daniel, R.M., Baker, E.N.: Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak1 protease at 18 Å resolution. J. Mol. Biol. 294, 1027–1040 (1999). https://doi.org/10.1006/jmbi.1999.3291

    Article  Google Scholar 

  31. Daroit, D.J., Corrêa, A.P.F., Segalin, J., Brandelli, A.: Characterization of a keratinolytic protease produced by the feather-degrading Amazonian bacterium Bacillus sp. P45. Biocatal. Biotransform. 28, 370–379 (2010). https://doi.org/10.3109/10242422.2010.532549

    Article  Google Scholar 

  32. Fisher, K.E., Ruan, B., Alexander, P.A., Wang, L., Bryan, P.N.: Mechanism of the kinetically-controlled folding reaction of subtilisin. Biochemistry 46, 640–651 (2007). https://doi.org/10.1021/bi061600z

    Article  Google Scholar 

  33. Zhang, H., Yu, L., Yang, Q., Sun, J., Bi, J., Liu, S., Zhang, C., Tang, L.: Optimization of a microwave-coupled enzymatic digestion process to prepare peanut peptides. Molecules 17, 5661–5674 (2012). https://doi.org/10.3390/molecules17055661

    Article  Google Scholar 

  34. Zhou, D., Qin, L., Zhu, B., Li, D., Yang, J., Dong, X., Murata, Y.: Optimisation of hydrolysis of purple sea urchin (Strongylocentrotus nudus) gonad by response surface methodology and evaluation of in vitro antioxidant activity of the hydrolysate. J. Sci. Food Agric. 92, 1694–1701 (2012). https://doi.org/10.1002/jsfa.5534

    Article  Google Scholar 

  35. Chen, X., Luo, Y., Qi, B., Luo, J., Wan, Y.: Improving the hydrolysis efficiency of soy sauce residue using ultrasonic probe-assisted enzymolysis technology. Ultrason. Sonochem. 35, 351–358 (2017). https://doi.org/10.1016/j.ultsonch.2016.10.013

    Article  Google Scholar 

  36. Kurozawa, L.E., Park, K.J., Hubinger, M.D.: Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. J. Food Sci. 73, 405–412 (2008). https://doi.org/10.1111/j.1750-3841.2008.00765.x

    Article  Google Scholar 

  37. Eijsink, V.G.H., Matthews, B.W., Vriend, G.: The role of calcium ions in the stability and instability of a thermolysin-like protease. Protein Sci. 20, 1346–1355 (2011). https://doi.org/10.1002/pro.670

    Article  Google Scholar 

  38. Holanda, H.D., Netto, F.M.: Recovery of components from shrimp (Xiphopenaeus kroyeri) processing waste by enzymatic hydrolysis. J. Food Sci. 71, 298–303 (2006). https://doi.org/10.1111/j.1750-3841.2006.00040.x

    Article  Google Scholar 

  39. Bhaskar, N., Benila, T., Radha, C., Lalitha, R.G.: Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Biores. Technol. 99, 335–343 (2008). https://doi.org/10.1016/j.biortech.2006.12.015

    Article  Google Scholar 

  40. Sarmadi, B.H., Ismail, A.: Antioxidative peptides from food proteins: a review. Peptides 31, 1949–1956 (2010). https://doi.org/10.1016/j.peptides.2010.06.020

    Article  Google Scholar 

  41. Sbroggio, M., Montilha, M., Figueiredo, V., Georgetti, S., Kurozawa, L.: Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci. Technol. 36, 375–381 (2016). https://doi.org/10.1590/1678-457X.000216

    Article  Google Scholar 

  42. Ngoh, Y.Y., Gan, C.Y.: Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chem. 190, 331–337 (2016). https://doi.org/10.1016/j.foodchem.2015.05.120

    Article  Google Scholar 

  43. Guo, P., Qi, Y., Zhu, C., Wang, Q.: Purification and identification of antioxidant peptides from Chinese cherry (Prunus pseudocerasus Lindl.) seeds. J. Funct. Foods. 19, 394–403 (2015). https://doi.org/10.1016/j.jff.2015.09.003

    Article  Google Scholar 

Download references

Funding

This study was financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) grant code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) Grants 423285/2018-1, 304857/2018-1 and 308880/2021-8, and São Paulo Research Foundation (FAPESP, Brazil) Grant 01550-8/2018. The authors are also grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à pesquisa do Estado do Rio Grande do Sul (FAPERGS) for the scholarships.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, analysis, investigation, writing- original draft, review and editing and visualization were performed by ICC. Methodology, supervision and writing—review and editing were performed by ARCB. Methodology and writing—review and editing were performed by AB. Methodology and writing—review and editing and supervision were performed by LS. Conceptualization, writing—review and editing, methodology, supervision, project administration and funding acquisition were performed by SJK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Susana Juliano Kalil.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha, I.C., Brandelli, A., Braga, A.R.C. et al. Feather Meal as a Source of Peptides with Antioxidant Activity from Enzymatic Hydrolysis. Waste Biomass Valor 14, 421–430 (2023). https://doi.org/10.1007/s12649-022-01886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01886-8

Keywords

Navigation