Skip to main content
Log in

Feather Protein Hydrolysates: A Study of Physicochemical, Functional Properties and Antioxidant Activity

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The feather is a valuable protein resource. The feather is the major waste by-product resulting from the poultry processing plants. Therefore, increasing the values of poultry feather waste has a significant effect in the environment.

Methods

In this study, the physicochemical and functional properties as well as the antioxidant activities of the feather protein hydrolysates (FPHs) obtained by acid hydrolysis after 100 min (FPH100), 200 min (FPH200) and 300 min (FPH300) were investigated.

Results

The results showed that FPH100, FPH200 and FPH300 presented high protein content 74.04%, 71.05% and 73.94%, respectively. All FPHs had a good solubility and possessed some interfacial properties, governed by their concentrations. The antioxidant activities of the different FPHs were evaluated using various in vitro antioxidant assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, total antioxidant capacity, reducing power and β-carotene bleaching. FPH100 generally showed a greater antioxidant activity across all the considered methods. The DPPH IC50 of FPH100 values were found to be 0.47 ± 0.011 mg/mL. Moreover, the FPH100 exhibited notable total antioxidant capacity and strong reducing power.

Conclusions

Our results suggested that FPHs could be a new potential source for preparing natural antioxidants applied in food, pharmaceutical and cosmetic preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grazziotin, A., Pimentel, F.A., de Jong, E.V., Brandelli, A.: Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Technol. 126, 135–144 (2006). https://doi.org/10.1016/j.anifeedsci.2005.06.002

    Article  Google Scholar 

  2. Papadopoulos, M.C.: Processed chicken feathers as feedstuff for poultry and swine. A review. Agric. Wastes. 14, 275–290 (1985). https://doi.org/10.1016/S0141-4607(85)80009-3

    Article  Google Scholar 

  3. Agrahari, S., Wadhwa, N., et al.: Degradation of chicken feather a poultry waste product by keratinolytic bacteria isolated from dumping site at Ghazipur poultry processing plant. Int J Poult Sci. 9, 482–489 (2010)

    Article  Google Scholar 

  4. Paul, T., Halder, S.K., Das, A., Bera, S., Maity, C., Mandal, A., Das, P.S., Mohapatra, P.K.D., Pati, B.R., Mondal, K.C.: Exploitation of chicken feather waste as a plant growth promoting agent using keratinase producing novel isolate Paenibacillus woosongensis TKB2. Biocatal. Agric. Biotechnol. 2, 50–57 (2013). https://doi.org/10.1016/j.bcab.2012.10.001

    Article  Google Scholar 

  5. Fakhfakh, N., Ktari, N., Haddar, A., Mnif, I.H., Dahmen, I., Nasri, M.: Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochem. 46, 1731–1737 (2011). https://doi.org/10.1016/j.procbio.2011.05.023

    Article  Google Scholar 

  6. Fontoura, R., Daroit, D.J., Correa, A.P.F., Meira, S.M.M., Mosquera, M., Brandelli, A.: Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities. New Biotechnol. 31, 506–513 (2014). https://doi.org/10.1016/j.nbt.2014.07.002

    Article  Google Scholar 

  7. Grazziotin, A., Pimentel, F.A., Jong, E.V.D., Brandelli, A.: Poultry feather hydrolysate as a protein source for growing rats. Braz. J. Vet. Res. Anim. Sci. 45, 61–67 (2008)

    Article  Google Scholar 

  8. Dalev, P.G.: Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour. Technol. 48, 265–267 (1994). https://doi.org/10.1016/0960-8524(94)90156-2

    Article  Google Scholar 

  9. Coward-Kelly, G., Chang, V.S., Agbogbo, F.K., Holtzapple, M.T.: Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Bioresour. Technol. 97, 1337–1343 (2006). https://doi.org/10.1016/j.biortech.2005.05.021

    Article  Google Scholar 

  10. Laguerre, M., Lecomte, J., Villeneuve, P.: Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog. Lipid Res. 46, 244–282 (2007). https://doi.org/10.1016/j.plipres.2007.05.002

    Article  Google Scholar 

  11. Phongthai, S., D’Amico, S., Schoenlechner, R., Homthawornchoo, W., Rawdkuen, S.: Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 240, 156–164 (2018). https://doi.org/10.1016/j.foodchem.2017.07.080

    Article  Google Scholar 

  12. Shavandi, A., Hu, Z., Teh, S., Zhao, J., Carne, A., Bekhit, A., Bekhit, A.E.-D.A.: Antioxidant and functional properties of protein hydrolysates obtained from squid pen chitosan extraction effluent. Food Chem. 227, 194–201 (2017). https://doi.org/10.1016/j.foodchem.2017.01.099

    Article  Google Scholar 

  13. Suwal, S., Ketnawa, S., Liceaga, A.M., Huang, J.-Y.: Electro-membrane fractionation of antioxidant peptides from protein hydrolysates of rainbow trout (Oncorhynchus mykiss) byproducts. Innov. Food Sci. Emerg. Technol. 45, 122–131 (2018). https://doi.org/10.1016/j.ifset.2017.08.016

    Article  Google Scholar 

  14. Zhang, M., Mu, T.-H.: Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 43, 92–101 (2017). https://doi.org/10.1016/j.ifset.2017.08.001

    Article  Google Scholar 

  15. Kumar, D.M., Priya, P., Balasundari, S.N., Devi, G., Rebecca, A.I.N., Kalaichelvan, P.T.: Production and optimization of feather protein hydrolysate from Bacillus sp. MPTK6 and its antioxidant potential. Middle East J. Sci. Res. 11, 900–907 (2012)

    Google Scholar 

  16. Wan, M.-Y., Dong, G., Yang, B.-Q., Feng, H.: Identification and characterization of a novel antioxidant peptide from feather keratin hydrolysate. Biotechnol. Lett. 38, 643–649 (2016). https://doi.org/10.1007/s10529-015-2016-9

    Article  Google Scholar 

  17. Ben Hamad Bouhamed, S., Kechaou, N.: Kinetic study of sulphuric acid hydrolysis of protein feathers. Bioprocess. Biosyst. Eng. 40, 715–721 (2017). https://doi.org/10.1007/s00449-017-1737-7

    Article  Google Scholar 

  18. Gornall, A.G., Bardawill, C.J., David, M.M., et al.: Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751–766 (1949)

    Google Scholar 

  19. AOAC: Official Methods of Analysis, 17th edn. Association of Official Agricultural Chemists, Arlington (2000)

    Google Scholar 

  20. AOAC: Official Methods of Analysis, 16th edn. Association of Official Agricultural Chemists, Washington (1999)

    Google Scholar 

  21. AOAC: Official Methods of Analyses. Association of Official Agricultural Chemists, Washington D.C (1990)

    Google Scholar 

  22. Zou, Y., Wang, W., Li, Q., Chen, Y., Zheng, D., Zou, Y., Zhang, M., Zhao, T., Mao, G., Feng, W., Wu, X., Yang, L.: Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochem. 51, 431–443 (2016). https://doi.org/10.1016/j.procbio.2015.12.011

    Article  Google Scholar 

  23. Lin, M.J.Y., Humbert, E.S., Sosulski, F.W.: Certain functional properties of sunflower meal products. J. Food Sci. 39, 368–370 (1974). https://doi.org/10.1111/j.1365-2621.1974.tb02896.x

    Article  Google Scholar 

  24. Pearce, K.N., Kinsella, J.E.: Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26, 716–723 (1978). https://doi.org/10.1021/jf60217a041

    Article  Google Scholar 

  25. Shahidi, F., Han, X.-Q., Synowiecki, J.: Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 53, 285–293 (1995). https://doi.org/10.1016/0308-8146(95)93934-J

    Article  Google Scholar 

  26. Bersuder, P., Hole, M., Smith, G.: Antioxidants from a heated histidine-glucose model system. I: investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J. Am. Oil Chem. Soc. 75, 181–187 (1998). https://doi.org/10.1007/s11746-998-0030-y

    Article  Google Scholar 

  27. Prieto, P., Pineda, M., Aguilar, M.: Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341 (1999). https://doi.org/10.1006/abio.1999.4019

    Article  Google Scholar 

  28. Yıldırım, A., Mavi, A., Kara, A.A.: Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 49, 4083–4089 (2001). https://doi.org/10.1021/jf0103572

    Article  Google Scholar 

  29. Koleva, I.I., van Beek, T.A., Linssen, J.P.H., de Groot, A., Evstatieva, L.N.: Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem. Anal. 13, 8–17 (2002). https://doi.org/10.1002/pca.611

    Article  Google Scholar 

  30. Dathe, M., Schümann, M., Wieprecht, T., Winkler, A., Beyermann, M., Krause, E., Matsuzaki, K., Murase, O., Bienert, M.: Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 35, 12612–12622 (1996). https://doi.org/10.1021/bi960835f

    Article  Google Scholar 

  31. Kristinsson, H.G., Rasco, B.A.: Biochemical and functional properties of atlantic Salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agric. Food Chem. 48, 657–666 (2000). https://doi.org/10.1021/jf990447v

    Article  Google Scholar 

  32. Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R.B.S.B., Mehiri, R., Hajji, M., Nasri, M.: Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochem. 49, 963–972 (2014). https://doi.org/10.1016/j.procbio.2014.03.004

    Article  Google Scholar 

  33. Zayas, J.F.: Solubility of proteins. In: Zayas, J.F. (ed.) Functionality of Proteins in Food, pp. 6–75. Springer, Berlin, (1997)

    Chapter  Google Scholar 

  34. Gbogouri, G.a., Linder, M., Fanni, J., Parmentier, M.: Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. 69, C615–C622 (2004). https://doi.org/10.1111/j.1365-2621.2004.tb09909.x

    Article  Google Scholar 

  35. Klompong, V., Benjakul, S., Kantachote, D., Shahidi, F.: Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102, 1317–1327 (2007). https://doi.org/10.1016/j.foodchem.2006.07.016

    Article  Google Scholar 

  36. Sila, A., Sayari, N., Balti, R., Martinez-Alvarez, O., Nedjar-Arroume, N., Moncef, N., Bougatef, A.: Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 148, 445–452 (2014). https://doi.org/10.1016/j.foodchem.2013.05.146

    Article  Google Scholar 

  37. Marinova, K.G., Basheva, E.S., Nenova, B., Temelska, M., Mirarefi, A.Y., Campbell, B., Ivanov, I.B.: Physico-chemical factors controlling the foamability and foam stability of milk proteins: sodium caseinate and whey protein concentrates. Food Hydrocoll. 23, 1864–1876 (2009). https://doi.org/10.1016/j.foodhyd.2009.03.003

    Article  Google Scholar 

  38. Hailing, P.J., Walstra, P.: Protein-stabilized foams and emulsions.Crit. Rev. Food Sci. Nutr. 15, 155–203 (1981). https://doi.org/10.1080/10408398109527315

    Article  Google Scholar 

  39. Mutilangi, W.A.M, Panyam, D., Kilara, A.: Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate. J. Food Sci. 61, 270–275 (1996). https://doi.org/10.1111/j.1365-2621.1996.tb14174.x

    Article  Google Scholar 

  40. Thiansilakul, Y., Benjakul, S., Shahidi, F.: Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 103, 1385–1394 (2007). https://doi.org/10.1016/j.foodchem.2006.10.055

    Article  Google Scholar 

  41. Sánchez, C.C., Patino, J.M.R.: Interfacial, foaming and emulsifying characteristics of sodium caseinate as influenced by protein concentration in solution. Food Hydrocoll. 19, 407–416 (2005). https://doi.org/10.1016/j.foodhyd.2004.10.007

    Article  Google Scholar 

  42. Lawal, O.S.: Functionality of African locust bean (Parkia biglobossa) protein isolate: effects of pH, ionic strength and various protein concentrations. Food Chem. 86, 345–355 (2004). https://doi.org/10.1016/j.foodchem.2003.09.036

    Article  Google Scholar 

  43. García-Moreno, P.J., Batista, I., Pires, C., Bandarra, N.M., Espejo-Carpio, F.J., Guadix, A., Guadix, E.M.: Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Res. Int. 65, 469–476 (2014). https://doi.org/10.1016/j.foodres.2014.03.061

    Article  Google Scholar 

  44. Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T.: Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945–948 (1992). https://doi.org/10.1021/jf00018a005

    Article  Google Scholar 

  45. Wu, H.-C., Chen, H.-M., Shiau, C.-Y.: Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36, 949–957 (2003). https://doi.org/10.1016/S0963-9969(03)00104-2

    Article  Google Scholar 

  46. Yıldırım, A., Mavi, A., Oktay, M., Kara, A.A., Algur, ÖF., Bilaloǧlu, V.: Comparison of antioxidant and antimicrobial activities of Tilia (Tilia Argentea Desf Ex DC), sage (Salvia Triloba L.), and black tea (Camellia sinensis) extracts. J. Agric. Food Chem. 48, 5030–5034 (2000). https://doi.org/10.1021/jf000590k

    Article  Google Scholar 

  47. Sila, A., Nedjar-Arroume, N., Hedhili, K., Chataigné, G., Balti, R., Nasri, M., Dhulster, P., Bougatef, A.: Antibacterial peptides from barbel muscle protein hydrolysates: activity against some pathogenic bacteria. LWT-Food Sci. Technol. 55, 183–188 (2014). https://doi.org/10.1016/j.lwt.2013.07.021

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Tunisian Ministry of Higher Education, Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Ben Hamad Bouhamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hamad Bouhamed, S., Krichen, F. & Kechaou, N. Feather Protein Hydrolysates: A Study of Physicochemical, Functional Properties and Antioxidant Activity. Waste Biomass Valor 11, 51–62 (2020). https://doi.org/10.1007/s12649-018-0451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0451-2

Keywords

Navigation