Skip to main content
Log in

Self-emulsifiable Bioactive Derivatives of Technical Cashew Nut Shell Liquid (tCNSL) Developed to Control Aedes aegypti Populations

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The use of insecticides to control vector mosquitoes is still a necessary practice in many countries. Due to the negative impacts and increasing mosquito resistance to synthetic insecticides, environmentally friendly alternatives are needed. In this context, products derived from the technical cashew nut shell liquid (tCNSL) have shown promise as larvicides to control Aedes aegypti. Our objective was to develop 5 new self-emulsifiable bioactive derivatives from partial tCNSL neutralization reactions with 2 inorganic and 3 organic bases, and to determine their larvicidal activities against Ae. aegypti. We also evaluated their antimicrobial activities and ecotoxicological potential. All five bioactive derivatives of tCNSL had larvicidal activity against Ae. aegypti. Four bioactive derivatives had some bacteriostatic activity, but none had fungicidal activity. Although the five bioactive derivatives are toxic against aquatic organisms, in general they were less toxic against Pseudokirchneriella subcapitata, Daphnia similis, and Oreochromis niloticus, than the larvicides recommended by World Health Organization (WHO). Considering the development of low-cost multifunctional bioproducts it is suggested that the bioactive derivative obtained from tCNSL that was partially neutralized whit NaOH (tCNSLNa) can be incorporated into sanitizing products for Ae. aegypti domestic control.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The analyzes developed and the data generated from this research are included in this article, in addition to containing supplementary information (appendix).

Code Availability

Not applicable.

References

  1. Chapagain, B.P., Saharan, V., Wiesman, Z.: Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresour. Technol. 99, 1165–1168 (2008). https://doi.org/10.1016/j.biortech.2007.02.023

    Article  Google Scholar 

  2. Benelli, G., Murugan, K., Panneerselvam, C., Madhiyazhagan, P., Conti, B., Nicoletti, M.: Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol. Res. 114, 391–397 (2015). https://doi.org/10.1007/s00436-014-4286-x

    Article  Google Scholar 

  3. Bardach, A.E., García-Perdomo, H.A., Alcaraz, A., López, E.T., Gándara, R.A.R., Ruvinsky, S., Ciapponi, A.: Interventions for the control of Aedes aegypti in Latin America and the Caribbean: systematic review and meta-analysis. Trop. Med. Int. Health 24, 530–552 (2019). https://doi.org/10.1111/tmi.13217

    Article  Google Scholar 

  4. Lucia, A., Toloza, A.C., Fanucce, M., Fernández-Peña, L., Ortega, F., Rubio, R.G., Coviella, C., Guzmán, E.: Nanoemulsions based on thymol-eugenol mixtures: characterization, stability and larvicidal activity against Aedes aegypti. Bull. Insectol. 73, 153–160 (2020)

    Google Scholar 

  5. Benelli, G., Jeffries, C.L., Walker, T.: Biological control of mosquito vectors: past, present, and future. Insects 7, 52 (2016). https://doi.org/10.3390/insects7040052

    Article  Google Scholar 

  6. Benelli, G., Duggan, M.F.: Management of arthropod vector data–social and ecological dynamics facing the one health perspective. Acta Trop. 182, 80–91 (2018). https://doi.org/10.1016/j.actatropica.2018.02.015

    Article  Google Scholar 

  7. Jorge, M.R., Crispim, B.A., Merey, F.M., Barufatti, A., Cabrini, I., Dantas, F.G.S., Oliveira, K.M.P., Kummrow, F., Beatriz, A., Santos, T., Dias, D., Ventura, J., Nogueira, C.R., Gomes, R.S., Arruda, E.J.: Sulphonates’ mixtures and emulsions obtained from technical cashew nut shell liquid and cardanol for control of Aedes aegypti (Diptera: Culicidae). Environ. Sci. Pollut. Res. 27, 27870–27884 (2020). https://doi.org/10.1007/s11356-020-08998-5

    Article  Google Scholar 

  8. Lucia, A., Toloza, A.C., Guzmán, E., Ortega, F., Rubio, R.G.: Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ 5, e3171 (2017). https://doi.org/10.7717/peerj.3171

    Article  Google Scholar 

  9. Lomonaco, D., Mele, G., Mazzetto, S.E.: Cashew nutshell liquid (CNSL): from an agro-industrial waste to a sustainable alternative to petrochemical resources. In: Anilkumar, P. (ed.) Cashew nut shell liquid, pp. 19–38. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  10. Guissoni, A.C.P., Silva, I.G., Geris, R., Cunha, L.C.D., Silva, H.H.G.D.: Atividade larvicida de Anacardium occidentale como alternativa ao controle de Aedes aegypti e sua toxicidade em Rattus norvegicus. Rev. Bras. Plantas Med. 15, 363–367 (2013). https://doi.org/10.1590/S1516-05722013000300008

    Article  Google Scholar 

  11. Dourado, D.M., Rosa, A.C., Porto, K.R.A., Roel, A.R., Cardoso, C.A.L., Favero, S., Matias, R.: Effects of cashew nut shell liquid (CNSL) component upon Aedes aegypti Lin. (Diptera: Culicidae) larvae’s midgut. Afr. J. Biotechnol. 14, 829–834 (2015). https://doi.org/10.5897/AJB2014.14347

    Article  Google Scholar 

  12. Lomonaco, D., Santiago, G.M.P., Ferreira, Y.S., Arriaga, Â.M.C., Mazzetto, S.E., Mele, G., Vasapollo, G.: Study of technical CNSL and its main components as new green larvicides. Green Chem. 11, 31–33 (2009). https://doi.org/10.1039/B811504D

    Article  Google Scholar 

  13. Balachandran, V.S., Jadhav, S.R., Vemula, P.K., John, G.: Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chem. Soc. Rev. 42, 427–438 (2013). https://doi.org/10.1039/C2CS35344J

    Article  Google Scholar 

  14. Mgaya, J., Shombe, G.B., Masikane, S.C., Mlowe, S., Mubofu, E.B., Revaprasadu, N.: Cashew nut shell: a potential bio-resource for the production of bio-sourced chemicals, materials and fuels. Green Chem. 21, 1186–1201 (2019). https://doi.org/10.1039/C8GC02972E

    Article  Google Scholar 

  15. Torres, R.C., Garbo, A.G., Walde, R.Z.M.L.: Characterization and bioassay for larvicidal activity of Anacardium occidentale (cashew) shell waste fractions against dengue vector Aedes aegypti. Parasitol. Res. 114, 3699–3702 (2015). https://doi.org/10.1007/s00436-015-4598-5

    Article  Google Scholar 

  16. Almanzor, B.L.J., Ho, H.T., Carvajal, T.M.: Ecdysis period and rate deviations of dengue mosquito vector, Aedes aegypti reared in different artificial water-holding containers. J. Vector Borne Dis. 53, 37–45 (2016)

    Google Scholar 

  17. Dhar-Chowdhury, P., Haque, C.E., Lindsay, R., Hossain, S.: Socioeconomic and ecological factors influencing Aedes aegypti prevalence, abundance, and distribution in Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 94, 1223–1233 (2016). https://doi.org/10.4269/ajtmh.15-0639

    Article  Google Scholar 

  18. Kumar, G., Singh, R.K., Pande, V., Dhiman, R.C.: Impact of container material on the development of Aedes aegypti larvae at different temperatures. J. Vector Borne. Dis. 53, 144–148 (2016)

    Google Scholar 

  19. Lucia, A., Girard, C., Fanucce, M., Coviella, C., Rubio, R.G., Ortega, F., Guzmán, E.: Development of an environmentally friendly larvicidal formulation based on essential oil compound blend to control Aedes aegypti larvae: correlations between physicochemical properties and insecticidal activity. ACS Sustain. Chem. Eng. 8, 10995–11006 (2020). https://doi.org/10.1021/acssuschemeng.0c03778

    Article  Google Scholar 

  20. Lucia, A., Guzmán, E.: Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv. Colloid Interface Sci. 287, 102330 (2021). https://doi.org/10.1016/j.cis.2020.102330

    Article  Google Scholar 

  21. Laurens, A., Fourneau, C., Hocquemiller, R., Cavé, A., Bories, C., Loiseau, P.M.: Antivectorial activities of cashew nut shell extracts from Anacardium occidentale L. Phytother. Res. 11, 145–146 (1997). https://doi.org/10.1002/(SICI)1099-1573(199703)11:2%3c145::AID-PTR40%3e3.0.CO;2-%23

    Article  Google Scholar 

  22. Matos, J.E.X., Silva, F.J.A., Vieira, P.B.: Solventes para extração do líquido da castanha de caju (LCC) e compatibilidade ambiental. Rev. Technol. 29, 101–109 (2008)

    Google Scholar 

  23. WHO—World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. https://apps.who.int/iris/handle/10665/69101 (2005). Accessed 25 March 2020.

  24. Anjolette, A.F.F., Macoris, M.L.G.: Técnicas para manutenção de Aedes aegypti em laboratório. BEPA 156, 19–29 (2016)

    Google Scholar 

  25. R Core Team: R studio: integrated development for R. R Studio Inc., Boston (2019)

    Google Scholar 

  26. WHO—World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control: new edition. https://apps.who.int/iris/handle/10665/44188 (2009). Accessed 25 March 2020.

  27. CLSI—Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 9th edn. CLSI, Wayne (2012)

    Google Scholar 

  28. CLSI: CLSI document M07–A9. Clinical and Laboratory Standards Institute, Wayne (2012)

    Google Scholar 

  29. CLSI—Clinical and Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard. CLSI document M27–A3, 3rd edn. Clinical and Laboratory Standards Institute, Wayne (2008)

    Google Scholar 

  30. Bagiu, R.V., Vlaicu, B., Butnariu, M.: Chemical composition and in vitro antifungal activity screening of the Allium ursinum L. (Liliaceae). Int. J. Mol. Sci. 13, 1426–1436 (2012). https://doi.org/10.3390/ijms13021426

    Article  Google Scholar 

  31. OECD—Organisation for Economic Cooperation and Development: Test No. 201: guideline for testing of chemicals, freshwater alga and cyanobacteria growth inhibition. OECD guidelines for test chemicals. Associação Brasileira de Normas Técnicas, Rio de Janeiro (2011)

    Google Scholar 

  32. ABNT—Associação Brasileira de Normas Técnicas: ABNT NBR 12648—Ecotoxicologia aquática—Toxicidade crônica—Método de ensaio com algas (Chlorophyceae). Associação Brasileira de Normas Técnicas, Rio de Janeiro (2018)

    Google Scholar 

  33. ABNT—Associação Brasileira de Normas Técnicas: ABNT NBR 12713—Ecotoxicologia aquática—Toxicidade aguda—Método de ensaio com Daphnia spp (Crustacea, Cladocera). Associação Brasileira de Normas Técnicas, Rio de Janeiro (2016)

    Google Scholar 

  34. OECD—Organisation for Economic Cooperation and Development: Test No. 202: Daphnia sp. acute immobilisation test. OECD guidelines for test chemicals. OECD, Paris (2004)

    Google Scholar 

  35. OECD—Organisation for Economic Cooperation and Development: Test No. 203: fish, acute toxicity test. OECD guidelines for test chemicals. OECD, Paris (1992)

    Google Scholar 

  36. ABNT—Associação Brasileira de Normas Técnicas: ABNT NBR 15088—Ecotoxicologia aquática—Toxicidade aguda—Método de ensaio com peixes (Cyprinidae). Associação Brasileira de Normas Técnicas, Rio de Janeiro (2016)

    Google Scholar 

  37. Norberg-King, T.J.: A linear interpolation method for sublethal toxicity: the inhibition concentration (ICp) approach. Version 2.0. National Effluent Toxicity Assessment Center Technical Report 03–93 (1993)

  38. Hamilton, M.A., Russo, R.C., Thurston, R.V.: Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11, 714–719 (1977). https://doi.org/10.1021/es60130a004

    Article  Google Scholar 

  39. OECD—Organisation for Economic Cooperation and Development: Harmonised integrated classification system for human health and environmental hazards of chemical substances and mixtures. OECD series on testing and assessment No. 33. OECD, Paris (2002)

    Google Scholar 

  40. Komalamisra, N., Trongtokit, Y., Rongsriyam, Y., Apiwathnasorn, C.: Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J. Trop. Med. Public Health 36, 1412–1422 (2005)

    Google Scholar 

  41. Carvalho, G.H.F., Andrade, M.A., Araújo, C.N., Santos, M.L., Castro, N.A., Charneau, S., Monnerat, R., Santana, J.M., Bastos, I.M.D.: Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nut shell against arbovirus vectors. Environ. Sci. Pollut. Res. 26, 5514–5523 (2019). https://doi.org/10.1007/s11356-018-3905-y

    Article  Google Scholar 

  42. Paiva, D.R., Lima, D.P., Avvari, N.P., Arruda, E.J., Cabrini, I., Marques, M.R., Santos, E.A., Biaggio, F.C., Sangi, D.P., Beatriz, A.: A potent larvicidal agent against Aedes aegypti mosquito from cardanol. An. Acad. Bras. Ciênc. 89, 373–382 (2017). https://doi.org/10.1590/0001-3765201720160615

    Article  Google Scholar 

  43. Lenardão, E.J., Freitag, R.A., Dabdoub, M.J., Batista, A.C.F., Silveira, C.D.C.: “Green Chemistry”: os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Quím. Nova 26, 123–129 (2003). https://doi.org/10.1590/S0100-40422003000100020

    Article  Google Scholar 

  44. Attanasi, O.A., Berretta, S., Fiani, C., Filippone, P., Mele, G., Saladino, R.: Synthesis and reactions of nitro derivatives of hydrogenated cardanol. Tetrahedron 62, 6113–6120 (2006). https://doi.org/10.1016/j.tet.2006.03.105

    Article  Google Scholar 

  45. Oliveira, M.S.C., Morais, S.M., Magalhães, D.V., Batista, W.P., Vieira, I.G.P., Craveiro, A.A., Manezes, J.E.S.A., Carvalho, A.F.U., Lima, G.P.G.: Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop. 117, 165–170 (2011). https://doi.org/10.1016/j.actatropica.2010.08.003

    Article  Google Scholar 

  46. Vani, J.M., Monreal, M.T.F.D., Auharek, S.A., Cunha-Laura, A.L., Arruda, E.J., Lima, A.R., Silva, C.M., Antoniolli-Silva, A.C.M.B., Lima, D.P., Beatriz, A., Oliveira, R.J.: The mixture of cashew nut shell liquid and castor oil results in an efficient larvicide against Aedes aegypti that does not alter embryo-fetal development, reproductive performance or DNA integrity. PLoS ONE 13, e0193509 (2018). https://doi.org/10.1371/journal.pone.0193509

    Article  Google Scholar 

  47. Kala, S., Sogan, N., Verma, P., Naik, S.N., Agarwal, A., Patanjali, P.K., Kumar, J.: Nanoemulsion of cashew nut shell liquid bio-waste: mosquito larvicidal activity and insights on possible mode of action. S. Afr. J. Bot. 127, 293–300 (2019). https://doi.org/10.1016/j.sajb.2019.10.006

    Article  Google Scholar 

  48. Raraswati, G.R., Sudarsono, S., Mulyaningsih, B.: Larvicidal activity of a mixture of cashew nut shell liquid and water-soluble extract of soap nut fruit (Sapindus rarak DC.) against 3rd instar larvae of Aedes aegypti. Biol. Med. Nat. Prod. Chem. 3, 53–57 (2014). https://doi.org/10.14421/biomedich.2014.32.53-57

    Article  Google Scholar 

  49. Kanehashi, S., Masuda, R., Yokoyama, K., Kanamoto, T., Nakashima, H., Miyakoshi, T.: Development of a cashew nut shell liquid (CNSL)-based polymer for antibacterial activity. J. Appl. Polym. Sci. 132, 42725 (2015). https://doi.org/10.1002/app.42725

    Article  Google Scholar 

  50. Khatib, S.K., Bullón, J., Vivas, J., Bahsas, A., Rosales-Oballos, Y., Marquez, R., Forgiarini, A., Salager, J.L.: Synthesis, characterization, evaluation of interfacial properties and antibacterial activities of dicarboxylate anacardic acid derivatives from cashew nut shell liquid of Anacardium occidentale L. J. Surfact. Deterg. 23, 503–512 (2020). https://doi.org/10.1002/jsde.12384

    Article  Google Scholar 

  51. Ashraf, M.S., Rathinasamy, K.: Antibacterial and anticancer activity of the purified cashew nut shell liquid: implications in cancer chemotherapy and wound healing. Nat. Prod. Res. 32, 2856–2860 (2018). https://doi.org/10.1080/14786419.2017.1380022

    Article  Google Scholar 

  52. Pimentel, M., Lima, D., Martins, L., Beatriz, A., Santaella, S., Costa-Lotufo, L.: Ecotoxicological analysis of cashew nut industry effluents, specifically two of its major phenolic components, cardol and cardanol. Pan-Am. J. Aquat. Sci. 4, 363–368 (2009)

    Google Scholar 

  53. Leite, A.D.S., Dantas, A.F., Oliveira, G.L.D.S., Gomes Júnior, A.L., Lima, S.G., Citó, A.M.G.L., Freitas, R.M., Melo-Cavalcante, A.A.C., Lopes, J.A.D.: Evaluation of toxic, cytotoxic, mutagenic, and antimutagenic activities of natural and technical cashew nut shell liquids using the Allium cepa and Artemia salina bioassays. Biomed. Res. Int. 2015, 626835 (2015). https://doi.org/10.1155/2015/626835

    Article  Google Scholar 

  54. Afsset, A., Assessment, R.: La lutte antivectorielle dans le cadre de l’épidémie de chikungunya sur l’Île de la Réunion. Évaluation des risques et de l’efficacité des produits larvicides. Maisons-Alfort, Paris (2007). https://www.anses.fr/en/system/files/BIOC2006et0008Ra.pdf.

  55. PPDB—Pesticide Properties DataBase. http://sitem.herts.ac.uk/aeru/ppdb/ (2012). Accessed 25 March 2020

  56. WHO—World Health Organization. Who specifications and evaluations for public health pesticides temephos, O,O,O’O’-tetramethyl O,O’-thiodi-p-phenylene bis(phosphorothioate). https://www.who.int/whopes/quality/Temephos_eval_only_June_2011.pdf?ua=1 (2011). Accessed 25 March 2020

  57. Vieira Santos, V.S., Caixeta, E.S., Campos Júnior, E.O.D., Pereira, B.B.: Ecotoxicological effects of larvicide used in the control of Aedes aegypti on nontarget organisms: redefining the use of piriproxifeno. J. Toxicol. Environ. Health Part A 80, 155–160 (2017). https://doi.org/10.1080/15287394.2016.1266721

    Article  Google Scholar 

  58. WHO—World Health Organization. Who specifications and evaluations for public health pesticides diflubenzuron, 1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea. https://www.who.int/pq-vector-control/prequalified-lists/DIFLUBENZURON.pdf?ua=1 (2017). Accessed 25 March 2020

  59. Nagaraju, B., Sudhakar, P., Anitha, A., Haribabu, G., Rathnamma, V.V.: Toxicity evaluation and behavioral studies of fresh water fish Labeo rohita exposed to Rimon. J. Res. Pharm. Biomed. Sci. 2, 722–727 (2011)

    Google Scholar 

  60. Abe, F.R., Machado, A.A., Coleone, A.C., Cruz, C., Machado-Neto, J.G.: Toxicity of diflubenzuron and temephos on freshwater fishes: ecotoxicological assays with Oreochromis niloticus and Hyphessobrycon eques. Water Air Soil Pollut. 230, 77 (2019). https://doi.org/10.1007/s11270-019-4128-7

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support for this study and a postgraduate scholarship from the Support Foundation for the Development of Education, Science and Technology of the State of Mato Grosso do Sul (FUNDECT), the National Council for Scientific and Technological Development (CNPq), and the Coordination for the Improvement of Higher Education Personnel (CAPES). The UFGD provided logistical support and infrastructure. We thank the Laboratory of Ecotoxicology and Genotoxicity (LECOGEN) for all support during the development of this study. The RESIBRAS (Fortaleza, CE, Brazil) supplied the technical cashew nut shell liquid from which the bioactive compounds were synthesized. The SUCEN (Marília, SP, Brazil) and the Biosciences Institute of the UFMS (Campo Grande, MS, Brazil) supplied Ae. aegypti Rockefeller eggs. AQUAFORTE (Dourados, MS) donated O. niloticus fingerlings.

Funding

Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq), and Foundation to Support the Development of Education, Science and Technology of the State of Mato Grosso do Sul (FUNDECT).

Author information

Authors and Affiliations

Authors

Contributions

HSN: formulation, methodology, validation, research, writing—proofreading and editing, visualization. BAC: conceptualization, methodology, research, validation, writing—revision and editing, resources, supervision, project administration. FMM: methodology, research, writing—proofreading and editing, visualization. FK: formal analysis, writing—proofreading and editing, visualization. RAP: methodology, resource, writing—review, visualization. CALC: methodology, research, writing—revision and editing. DLVO: methodology, research, writing—revision and editing. KMPO: methodology, validation, review, visualization. FGSD: methodology, validation, writing—proofreading and editing. EJA: conceptualization, methodology, validation, formal analysis, research, resources, writing—proofreading and editing, visualization, acquisition of funding. AB: conceptualization, methodology, validation, resources, formal analysis, writing—proofreading and editing, supervision, acquisition of financing, project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexeia Barufatti.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical Approval

All experimental procedures using Oreochromis niloticus for the development of this study followed the ethical principles of the Animal Ethics Committee of the Federal University of Grande Dourados (CEUA/UFGD), under protocol nº 09/2017-2.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, H.d., Crispim, B.d., Merey, F.M. et al. Self-emulsifiable Bioactive Derivatives of Technical Cashew Nut Shell Liquid (tCNSL) Developed to Control Aedes aegypti Populations. Waste Biomass Valor 13, 2539–2552 (2022). https://doi.org/10.1007/s12649-022-01683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01683-3

Keywords

Navigation