Skip to main content
Log in

Petcoke Revalorization as Support for ZnO-based Photocatalyst

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Petcoke is a residue from the petroleum oil industry which, due to its physicochemical characteristics and content of organic and inorganic material, can be exploited and revalued in order to be used to improve the photocatalytic properties of different semiconductors. With this in mind, the present work shows the evaluation of petcoke as a support material to ZnO to reduce organic pollutants in the aqueous phase. In order to synthesized the ZnO-petcoke composite, the petcoke was stabilized previously to its addition to the ZnO precursor solution. ZnO-petcoke composites were characterized with different spectrophotometric and physicochemical techniques and evaluated in the photodegradation reaction of methyl orange. The ZnO supported with petcoke thermally stabilized was the composite with the best degradation performance reaching a 30% higher removal efficiency than unsupported ZnO. The results indicated that it is possible to revalorize petcoke materials as carbon additives for improving the photocatalytic performance of semiconductors. Simple thermal annealing is enough for creating stable materials with improved pollutant removal capacities.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Predel, H.: Petroleum Coke, Ullmann's encyclopedia of industrial chemistry (2006)

  2. Caruso, J.A., Zhang, K., Schroeck, N.J., McCoy, B., McElmurry, S.P.: Petroleum coke in the urban environment: a review of potential health effects. Int J Env Res Pub He 12(6), 6218–6231 (2015)

    Article  Google Scholar 

  3. Shan, Y., Guan, D., Meng, J., Liu, Z., Schroeder, H., Liu, J., Mi, Z.: Rapid growth of petroleum coke consumption and its related emissions in China. Appl. Energy 226, 494–502 (2018)

    Article  Google Scholar 

  4. Administration USEI (2016) Carbon dioxide emission coefficients. https://www.eia.gov/environment/emissions/co2_vol_mass.php. Accessed 6 Feb 2020

  5. Puig-Gamero, M., Lara-Díaz, J., Valverde, J.L., Sanchez-Silva, L., Sánchez, P.: Dolomite effect on steam co-gasification of olive pomace, coal and petcoke: TGA-MS analysis, reactivity and synergistic effect. Fuel 234, 142–150 (2018)

    Article  Google Scholar 

  6. Olmeda, J., Sánchez de Rojas, M.I., Frías, M., Donatello, S., Cheeseman, C.R.: Effect of petroleum (pet) coke addition on the density and thermal conductivity of cement pastes and mortars. Fuel 107, 138–146 (2013)

    Article  Google Scholar 

  7. Nemanova, V., Abedini, A., Liliedahl, T., Engvall, K.: Co-gasification of petroleum coke and biomass. Fuel 117, 870–875 (2014)

    Article  Google Scholar 

  8. Yuzbasi, N.S., Selçuk, N.: Air and oxy-fuel combustion behavior of petcoke/lignite blends. Fuel 92(1), 137–144 (2012)

    Article  Google Scholar 

  9. Menéndez, J.A., Pis, J.J., Alvarez, R., Barriocanal, C., Fuente, E., Díez, M.A.: Characterization of petroleum coke as an additive in metallurgical cokemaking. Modification of thermoplastic properties of coal. Energ. Fuel. 10(6), 1262–1268 (1996)

    Article  Google Scholar 

  10. Briceño, S., Brämer-Escamilla, W., Silva, P., García, J., Del Castillo, H., Villarroel, M., Rodriguez, J.P., Ramos, M.A., Morales, R., Diaz, Y.: NiFe2O4/activated carbon nanocomposite as magnetic material from petcoke. J. Magn. Magn. Mater. 360, 67–72 (2014)

    Article  Google Scholar 

  11. Tan, K.B., Vakili, M., Horri, B.A., Poh, P.E., Abdullah, A.Z., Salamatinia, B.: Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep. Purif. Technol. 150, 229–242 (2015)

    Article  Google Scholar 

  12. Chakrabarti, S., Dutta, B.K.: Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269–278 (2004)

    Article  Google Scholar 

  13. Ren, H.-T., Yang, Q.: Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method. Appl. Surf. Sci. 396, 530–538 (2017)

    Article  Google Scholar 

  14. Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., Hasnain Isa, M.: Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J. Ind. Eng. Chem. 26, 1–36 (2015)

    Article  Google Scholar 

  15. Moezzi, A., McDonagh, A.M., Cortie, M.B.: Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185–186 1–22 (2012)

  16. Pant, B., Park, M., Kim, H.-Y., Park, S.-J.: Ag-ZnO photocatalyst anchored on carbon nanofibers: synthesis, characterization, and photocatalytic activities. Synth. Met. 220, 533–537 (2016)

    Article  Google Scholar 

  17. Pant, B., Ojha, G.P., Kim, H.-Y., Park, M., Park, S.-J.: Fly-ash-incorporated electrospun zinc oxide nanofibers: potential material for environmental remediation. Environ. Pollut. 245, 163–172 (2019)

    Article  Google Scholar 

  18. Lee, K.M., Lai, C.W., Ngai, K.S., Juan, J.C.: Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)

    Article  Google Scholar 

  19. Maučec, D., Šuligoj, A., Ristić, A., Dražić, G., Pintar, A., Tušar, N.N.: Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catal. Today 310, 32–41 (2018)

    Article  Google Scholar 

  20. Matos, J., Arcibar-Orozco, J., Poon, P.S., Pecchi, G., Rangel-Mendez, J.R.: Influence of phosphorous upon the formation of DMPO-OH and POBN-O2¯ spin-trapping adducts in carbon-supported P-promoted Fe-based photocatalysts. J Photoch Photobio A 391, 112362 (2020)

    Article  Google Scholar 

  21. Pant, B., Pant, H.R., Barakat, N.A.M., Park, M., Jeon, K., Choi, Y., Kim, H.-Y.: Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram. Int. 39(6), 7029–7035 (2013)

    Article  Google Scholar 

  22. Matos, J., Laine, J., Herrmann, J.-M.: Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. J. Catal. 200(1), 10–20 (2001)

    Article  Google Scholar 

  23. Giannakoudakis, D.A., Arcibar-Orozco, J.A., Bandosz, T.J.: Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate. Appl. Catal. B-Environ. 183, 37–46 (2016)

    Article  Google Scholar 

  24. Bandosz, T.J., Jagiello, J., Contescu, C., Schwarz, J.A.: Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. Carbon 31(7), 1193–1202 (1993)

    Article  Google Scholar 

  25. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    Article  Google Scholar 

  26. Lowell, S.S., Joan, E., Martin. A.T., Matthias, T.: Characterization of porous solids and powders: surface area, pore size and density. particle technology series. Kluwer Academic, The Netherlands, 346 (2004)

  27. Mott, N.F., Davis, E.A.: Electronic processes in non-crystalline materials. OUP Oxford (2012)

  28. Kumar, V., Kumari, S., Kumar, P., Kar, M., Kumar, L.: Structural analysis by Rietveld method and its correlation with optical properties of nanocrystalline zinc oxide. Adv. Mater. Lett 6(2), 139–147 (2015)

    Article  Google Scholar 

  29. Chen, J.-L., Devi, N., Li, N., Fu, D.-J., Ke, X.-W.: Synthesis of Pr-doped ZnO nanoparticles: their structural, optical, and photocatalytic properties. Chin. Phys. B 27(8), 086102 (2018)

    Article  Google Scholar 

  30. Ramimoghadam, D., Hussein, M.Z., Taufiq-Yap, Y.H.: The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the Properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 13(10), 13275–13293 (2012)

    Article  Google Scholar 

  31. Arcibar-Orozco, J.A., Giannakoudakis, D.A., Bandosz, T.J.: Copper hydroxyl nitrate/graphite oxide composite as superoxidant for the decomposition/mineralization of organophosphate-based chemical warfare agent surrogate. Adv. Mater. Interfaces 2(16) (2015)

  32. Wu, Q.-y, Liang, H.-q, Li, M., Liu, B.-t, Xu, Z.-k: Hierarchically porous carbon membranes derived from PAN and their selective adsorption of organic dyes. Chin. J. Polym. Sci. 34(1), 23–33 (2016)

    Article  Google Scholar 

  33. Kumar, M., Tamilarasan, R.: Modeling of experimental data for the adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Prosopis juliflora. Pol. J. Chem. Technol. 15(2), 29–39 (2013)

    Article  Google Scholar 

  34. Chen, X., Wu, Z., Gao, Z., Ye, B.C.: Effect of different activated carbon as carrier on the photocatalytic activity of Ag-N-ZnO photocatalyst for methyl orange degradation under visible light irradiation. Nanomaterials (Basel) 7(9) (2017)

  35. Posa, V.R., Annavaram, V., Koduru, J.R., Ammireddy, V.R., Somala, A.R.: Graphene-ZnO nanocomposite for highly efficient photocatalytic degradation of methyl orange dye under solar light irradiation. Korean J. Chem. Eng. 33(2), 456–464 (2016)

    Article  Google Scholar 

  36. Farag, H.K., Aboelenin, R.M., Fathy, N.A.: Photodegradation of methyl orange dye by ZnO loaded onto carbon xerogels composites. Asia-Pac. J. Chem. Eng. 12(1), 4–12 (2017)

    Article  Google Scholar 

  37. Wu, H., Lin, S., Chen, C., Liang, W., Liu, X., Yang, H.: A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater. Res. Bull. 83, 434–441 (2016)

    Article  Google Scholar 

  38. Jamil, T.S., Ghaly, M.Y., Fathy, N.A., Abd el-halim, T.A., Österlund, L.: Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Sep. Purif. Technol. 98, 270–279 (2012)

    Article  Google Scholar 

  39. Borade, P.A., Suroshe, J.S., Bogale, K., Garje, S.S., Jejurikar, S.M.: Photocatalytic performance of ZnO carbon composites for the degradation of methyl orange dye. Mater. Res. Express 7(1), 015512 (2020)

    Article  Google Scholar 

  40. Gamarra Guere, C., La Rosa-Toro, G.A.: Discoloration of methyl orange by fenton process. Rev Soc Quím Perú. 80(1), 24–34 (2014)

    Google Scholar 

Download references

Acknowledgements

Thanks for the financial support provided by CONACYT-México (Grant PN6281_2017) and Fondo CONACYT-SENER-HIDROCARBUROS (Grant FSCSH-2016-248090). H.E. Zilli-Tomita acknowledges the economic support provided by CIATEC. V.A. Suárez-Toriello, thank the Cátedras-CONACYT program (Project 965). The authors appreciate the help of Dra. Claudia Badillo and the facilities for access to the DRX instrument (Grant INFRA20115-253602 from CONACYT-México). We appreciate the assistance of Dr. René Rangel and Dra. Elizabeth Diane-Issacs and LANBAMA for the nitrogen adsorption measurements. The laboratory assistance of Ing. Catalina de la Rosa Juárez is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Saucedo-Lucero.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcibar-Orozco, J.A., Zili-Tomita, H.E., Suárez-Toriello, V.A. et al. Petcoke Revalorization as Support for ZnO-based Photocatalyst. Waste Biomass Valor 13, 1681–1694 (2022). https://doi.org/10.1007/s12649-021-01585-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01585-w

Keywords

Navigation