Skip to main content
Log in

Evaluation of Filter Cake Oil as Antifoam in Yeast Production: New Use for this By-Product of the Sugarcane Derivatives Industry

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpuse

Fodder yeast is obtained in an aerobic fermentation process where foaming is a major problem to be solved. In this article, the antifoam property of crude and purified filter cake oil is evaluated in order to use this residual as an alternative to replace the import of commercial antifoam agents and to reduce the production costs of fodder yeast.

Method

Knock down test and the comparisons with two commercial antifoam agents were done. Blackstrap molasses medium at 20 and 40 g/L of total reducing sugar was used. All products were studied in their pure form and commercial ones also in dilutions 1:2 and 1:5 v/v. Hansen's solubility parameters (HSPs) to analyze the affinity of each defoamer for yeast were determined.

Results

It was obtained the crude and purified filter cake oil showed similar behavior to commercial defoamers with an immediate antifoam effect, removing between 40 and 60% of the initial foam at both sugar concentrations in the first 5 min. The regression model for both medium concentration showed purified filter cake oil has the greatest knockdown effect (Ca = 57.00 and 74.11) and with greater foam suppression stability the commercial defoamer Quimifoam Máster (Cb = − 1.05 and − 1.51) respectively. Ra values obtained in HSPs test, indicated the affinity of defoamers to the medium.

Conclusion

Purified filter cake oil is an effective product for its use as an antifoam with the best knock down effect for both concentrations of sugars in the medium. The determination of HSPs corroborates the effectiveness of this product to suppress foam.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used in the article is available if required.

Code Availability

HSPiP software version 5.2.0.

References

  1. Nielsen, J.C., De Oliveira, F.S., Gundelund, T., Thykær, J., Workman, C.T., Olitta, T.: Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells. Appl. Microbiol. Biotechnol. 101, 8237–8248 (2017). https://doi.org/10.1007/s00253-017-8548-2

    Article  Google Scholar 

  2. Cevada, E., Roos, K., Álvarez, F., Carlotti, S., Vázquez, F.: High molar mass polyethers as defoamers of heavy crude oil. Fuel 221, 447–454 (2018). https://doi.org/10.1016/j.fuel.2018.02.136

    Article  Google Scholar 

  3. Saura, G., Otero, M.A., Martínez, J.A., Fundora, N., Reyes, E., Vasallo, M.C., Almazán, O.: Propagation of yeast biomass from distillery wastes. Process and product evaluation. Int. Sugar J. 105, 36–39 (2003)

    Google Scholar 

  4. García, R., Izquierdo, Y., Ribas, M., Tortoló, K., Ibañez, M., León, O., Saura, M., Saura, G.: Effects of urea supplementation on Candida utilis biomass production from destillery waste. Waste Biomass Valoriz. 5, 119–124 (2014). https://doi.org/10.1007/s12649-013-9209-z

    Article  Google Scholar 

  5. Condé, B.C., Bouchard, E., Culbert, J.A., Wilkinson, K.L., Fuentes, S., Howell, K.S.: Soluble protein and amino acid content affects the foam quality of sparkling wine. J. Agric. Food Chem. (2017). https://doi.org/10.1021/acs.jafc.7b02675

    Article  Google Scholar 

  6. Denkov, N.D., Marinova, K.G., Tcholakova, S.S.: Mechanistic understanding of the modes of action of foam control agents. Adv. Colloid Interface Sci. 206, 57–67 (2014). https://doi.org/10.1016/j.cis.2013.08.004

    Article  Google Scholar 

  7. Gélinas, P.: Aeration and foam control in Baker’s yeast production: mapping patents. Compr. Rev. Food Sci. Food Saf. 15, 371–391 (2016). https://doi.org/10.1111/1541-4337.12188

    Article  Google Scholar 

  8. Melo-Espinosa, E.A., Sánchez-Borroto, Y., Errasti, M., Piloto-Rodríguez, R., Sierens, R., Roger-Riba, J., Christopher-Hansen, A.: Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression. Energy Proced. 57, 886–895 (2014). https://doi.org/10.1016/j.egypro.2014.10.298

    Article  Google Scholar 

  9. Sahasrabudhe, S.N., Rodriguez-Martinez, V., O’Meara, M., Farkas, B.E.: Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: measurement and modeling. Int. J. Food Prop. 20(S2), S1965–S1981 (2017). https://doi.org/10.1080/10942912.2017.1360905

    Article  Google Scholar 

  10. Kougias, P.G., Tsapekos, P., Boe, K., Angelidaki, I.: Antifoaming effect of chemical compounds in manure biogas reactors. Water Res. 47(16), 6280–6288 (2013). https://doi.org/10.1016/j.ces.2016.11.033

    Article  Google Scholar 

  11. Cevada, E., Flores, C.A., López, A., Álvarez, F., Vázquez, F.: Study of the thermal stability of jojoba oil used as antifoaming agent in petroleum industry. J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-016-5911-y

    Article  Google Scholar 

  12. McClure, D.D., Lamy, M., Black, L., Kavanagh, J., Barton, G.W.: An experimental investigation into the behaviour of antifoaming agents. Chem. Eng. Sci. 160, 269–274 (2017). https://doi.org/10.1016/j.ces.2016.11.033

    Article  Google Scholar 

  13. Kato, Y., Osawa, T., Yoshihara, M., Fujii, H., Tsutsumi, S., Yamamoto, H.: Evaluation of the antifoaming effect using Hansen solubility parameters. ACS Omega 5, 5684–5690 (2020). https://doi.org/10.1021/acsomega.9b03567

    Article  Google Scholar 

  14. Nunes Pereira, C., Cañete Vebber, G.: A novel semi-empirical method for adjusting solubility parameters to surface tension based on the use of Stefan’s rule. J. Mol. Liq. 272, 520–527 (2018). https://doi.org/10.1016/j.molliq.2018.09.116

    Article  Google Scholar 

  15. Nunes Pereira, C., Cañete Vebber, G., Mauler, R.S., Bianchi, O.: DiPEVa, an interactive method for adjusting the three-dimensional solubility parameters to surface tension. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116799. (in press)

    Article  Google Scholar 

  16. Montano, R., Díaz de Arce, C., García, C.: Efecto antiespumante comparativo de esteres de girasol y cachaza respectivamente. ICIDCA Sobre deriv. caña azúcar 3, 52–59 (1993)

    Google Scholar 

  17. Soomro, R.K., Sherazi, S.T.H.: Extraction and characterization of seed oil waxes by using chromatographic techniques. Int. J. Ind. Chem. 4, 1–7 (2013)

    Article  Google Scholar 

  18. Chalapud, M.C., Baümler, E.R., Carelli, A.A.: Characterization of waxes and residual oil recovered from sunflower oil winterization waste. Eur. J. Lipid Sci. Technol. (2016). https://doi.org/10.1002/ejlt.201500608

    Article  Google Scholar 

  19. Porto, T., Lopes, R.: Designing biotechnological processes to reduce emulsions formation and improve oil recovery: study of antifoams application. Biochem. Eng. J. (2020). https://doi.org/10.1016/j.bej.2020.107745

    Article  Google Scholar 

  20. Reinosa, O.: El aceite de cera de cachaza de la caña de azúcar como fuente de sustancias naturales o precursoras de ellas. CENIC. Ciencias Químicas 35(1), 29–31 (2004)

    Google Scholar 

  21. Silveira, R.: Estudo da viabilidade técnica da produção de biodiesel a partir do óleo de cera de cana-de-açúcar. Dissertação apresentada para a obtenção do título de Mestre em Tecnologia de Alimentos Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas. Sao. Paulo. Brasil. p. 113 (2011)

  22. Hernández, E., Díaz, M., Pérez, K.: Determination of Hansen solubility parameters for sugar cane oil. Use of ethanol in sugarcane wax refining. Grasas aceites 72(2), e408 (2020). https://doi.org/10.3989/gya.0326201

    Article  Google Scholar 

  23. Abbott, S., Yamamoto, H.: HSPiP Software, 5th edn. 5.2.05 (2015)

  24. Yañez, E., Ballester, D., Fernández, N., Gatths, V., Monckeberg, F.: Chemical composition of Candida utilis and the biological quality of the yeast protein. J. Sci. Food Agric. 23, 581–586 (1972)

    Article  Google Scholar 

  25. Otero, M.A.; Almazán, O.: Las levaduras como base de una industria. Diferentes aplicaciones. Editorial Académica Española. Alemania (2012)

Download references

Acknowledgements

The authors gratefully acknowledge to Professor Gustavo Saura Laria for his technical assistance.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Indira Pérez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

The authors give their consent to participate.

Consent for Publication

The authors give their consent for the publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, I., Cruz, A., Tortoló, K. et al. Evaluation of Filter Cake Oil as Antifoam in Yeast Production: New Use for this By-Product of the Sugarcane Derivatives Industry. Waste Biomass Valor 13, 977–987 (2022). https://doi.org/10.1007/s12649-021-01578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01578-9

Keywords

Navigation