Skip to main content

Advertisement

Log in

Valorization of Cyprinus Carpio Skin for Biocompatible Collagen Hydrolysates with Potential Application in Foods, Cosmetics and Pharmaceuticals

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Fish collagen is reported with an increased bioavailability as compared to other sources, the extraction being performed on secondary sources as skin, bones, scales, or fins resulted after fish processing. The aim of the present study was to obtain biocompatible collagen hydrolysates from waste Cyprinus carpio skin, the main aquaculture species in Romania using an inexpensive and “green” neutral hydrolysis process. Neutral hydrolysis of pretreated fish skins performed for 6 h at a temperature of 135 °C and a pressure of 315 kPa produced collagen hydrolysates in 24.6–35.5% yields depending on the adopted pretreatment procedure. The extensive characterization of hydrolysate samples revealed a high purity degree (98% protein content, undetected ash content, pH value in the range 6–7), also confirmed by the absence of undesired aggregates in the characteristic fibril structure as determined by electronic microscopy. A specific collagen hydrolysate random coil structure and the absence of triple helix was determined by FTIR analysis and sustained by CD spectroscopy and X-Ray diffraction. The biocompatibility assessment for the obtained fish collagen hydrolysates revealed no cytotoxic effect on Human keratinocytes, with an 80% cell viability, superior as compared to conventional bovine collagen hydrolysate. Neutral hydrolysis of waste Cyprinus carpio skin yielded collagen hydrolysates with determined characteristics and biocompatibility superior to bovine collagen, suitable for application in foods, cosmetics and pharmaceutical industry.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gelsea, K., Poschlb, E., Aigner, T.: Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003). https://doi.org/10.1016/j.addr.2003.08.002

    Article  Google Scholar 

  2. Myllyharju, J., Kivirikko, K.I.: Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004). https://doi.org/10.1016/j.tig.2003.11.004

    Article  Google Scholar 

  3. Hong, H., Fan, H., Chalamaiah, M., Wu, J.: Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chem. 301, 125222 (2019). https://doi.org/10.1016/j.foodchem.2019.125222

    Article  Google Scholar 

  4. Soderhall, C., Marenholz, I., Kerscher, T., Ruschendorf, F., Esparza-Gordillo, J., Worm, M., Gruber, C., Mayr, G., Albrecht, M., Rohde, K., Schulz, H., Wahn, U., Hubner, N., Lee, Y.A.: Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLOS Biol. 5(9), e242 (2007). https://doi.org/10.1371/journal.pbio.0050242

    Article  Google Scholar 

  5. Schmidt, M.M., Dornelles, R.C.P., Mello, R.O., Kubota, E.H., Mazutti, M.A., Kempka, A.P., Demiate, I.M.: Collagen extraction process. Int. Food Res. J. 23, 913–922 (2016). http://www.ifrj.upm.edu.my/23%20(03)%202016/(1).pdf

  6. Alves, A.L., Marques, A.L.P., Martins, E., Silva, T.H., Reis, R.L.: Cosmetic potential of marine fish skin collagen. Cosmetics 4, 39 (2017). https://doi.org/10.3390/cosmetics4040039

    Article  Google Scholar 

  7. Subhan, F., Hussain, Z., Tauseef, I., Shehzad, A., Wahid, F.: A review on recent advances and applications of fish collagen. Crit. Rev. Food Sci. Nutr. 61, 1027–1037 (2021). https://doi.org/10.1080/10408398.2020.1751585

    Article  Google Scholar 

  8. Jafari, H., Lista, A., Mafosso, S.M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., Shavandi, A.: Fish collagen: extraction, characterization, and applications for biomaterials engineering. Polymers 12, 2230 (2020). https://doi.org/10.3390/polym12102230

    Article  Google Scholar 

  9. Aguirre-Cruz, G., León-López, A., Cruz-Gómez, V., Jiménez-Alvarado, R., Aguirre-Álvarez, G.: Collagen hydrolysates for skin protection: oral administration and topical formulation. Antioxidants 9, 181 (2020). https://doi.org/10.3390/antiox9020181

    Article  Google Scholar 

  10. Silva, T.H., Moreira-Silva, J., Marques, A.L.P., Domingues, A., Bayon, Y., Reis, R.L.: Marine origin collagens and its potential applications. Mar. Drugs. 12, 5881–5901 (2014). https://doi.org/10.3390/md12125881

    Article  Google Scholar 

  11. Nasri, M.: Bioactive peptides from fish collagen byproducts: a review, in byproducts from agriculture and fisheries: adding value for food, feed, pharma, and fuels. In: Simpson, B.K., Aryee, A.N.A., Toldra, F. (eds.) John Wiley & Sons Ltd., 309–333 (2019). https://doi.org/10.1002/9781119383956.ch13

  12. Gao, R., Yu, Q., Shen, Y., Chu, Q., Chen, G., Fen, S., Yang, M., Yuan, L., McClements, D.J., Sun, Q.: Production, bioactive properties, and potential applications of fish protein hydrolysates: developments and challenges. Trends Food Sci. Technol. 110, 687–699 (2021). https://doi.org/10.1016/j.tifs.2021.02.031

    Article  Google Scholar 

  13. Boonmaleerat, K., Wanachewin, O., Phitak, T., Pothacharoen, P., Kongtawelert, P.: Fish collagen hydrolysates modulate cartilage metabolism. Cell Biochem. Biophys. 76, 279–292 (2018). https://doi.org/10.1007/s12013-017-0817-2

    Article  Google Scholar 

  14. Sanchez, A., Blanco, M., Correa, B., Perez-Martin, R.I., Sotelo, C.G.: Effect of fish collagen hydrolysates on type I collagen mRNA levels of human dermal fibroblast culture. Mar. Drugs 16, 144 (2018). https://doi.org/10.3390/md16050144

    Article  Google Scholar 

  15. Aberoumand, A.: Comparative study between different methods of collagen extraction from fish and its properties. World Appl. Sci. J. 16, 316- 319 (2012). http://www.idosi.org/wasj/wasj16(3)12/1.pdf

  16. Ishak, N.H., Sarbon, N.M.: A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioproc Tech. 11, 2–16 (2018). https://doi.org/10.1007/s11947-017-1940-1

    Article  Google Scholar 

  17. Zamorano-Apodaca, J.C., García-Sifuentes, C.O., Carvajal-Millán, E., Vallejo-Galland, B., Scheuren-Acevedo, S.M., Lugo-Sánchez, M.E.: Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chem. 331, 127350 (2020). https://doi.org/10.1016/j.foodchem.2020.127350

    Article  Google Scholar 

  18. Marcet, I., Álvarez, C., Paredes, B., Díaz, M.: The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters. J. Waste Manag. 49, 364–371 (2016). https://doi.org/10.1016/j.wasman.2016.01.009

    Article  Google Scholar 

  19. Ahmed, R., Chun, B.-S.: Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J. Supercrit Fluids. 141, 88–96 (2018). https://doi.org/10.1016/j.supflu.2018.03.006

    Article  Google Scholar 

  20. Carvalho, A.M., Marques, A.P., Silva, T.H., Reis, R.L.: Evaluation of the potential of collagen from codfish skin as a biomaterial for biomedical applications. Mar. Drugs. 16, 495 (2018). https://doi.org/10.3390/md16120495

    Article  Google Scholar 

  21. Kittiphattanabawon, P., Benjakul, S., Sinthusamran, S., Kishimura, H.: Characteristics of collagen from the skin of clown featherback (Chitala ornata). J. Food Sci. Technol. 50, 1972–1978 (2015). https://doi.org/10.1111/ijfs.12864

    Article  Google Scholar 

  22. Morais, H.A., Silvestre, M.P.C., Silva, V.D.M., Silva, M.R., Simoes e Silva, A.C., Silveira, J.N.: Correlation between the degree of hydrolysis and the peptide profile of whey protein concentrate hydrolysates: effect of the enzyme type and reaction time. Am. J. Food Technol. 8, 1–16 (2013). https://doi.org/10.3923/ajft.2013.1.16

  23. Berridge, M.V., Herst, P.M., Tan, A.S.: Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11, 27–152 (2005). https://doi.org/10.1016/S1387-2656(05)11004-7

    Article  Google Scholar 

  24. Khiari, Z., Rico, D., Martin-Diana, A.B., Barry-Ryan, C.: Valorization of fish by-products: rheological, textural and microstructural properties of mackerel skin gelatins. J. Mater. Cycles Waste Manag. 19, 180–191 (2017). https://doi.org/10.1007/s10163-015-0399-2

    Article  Google Scholar 

  25. Duan, R., Zhang, J., Dua, X., Yao, X., Konno, K.: Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem. 112, 702–770 (2009). https://doi.org/10.1016/j.foodchem.2008.06.020

    Article  Google Scholar 

  26. Haibo, W., Yanping, L., Haiyin, W., Hanjun, Z., Min, W., Liangzhong, L.: Physical-chemical properties of collagens from skin, scale, and bone of grass carp (Ctenopharyngodon idellus). J. Aquat. Food Prod. Technol. 23, 264–277 (2014). https://doi.org/10.1080/10498850.2012.713450

    Article  Google Scholar 

  27. Mahboob, S., Haider, S., Sultana, S., Al-Ghanim, K.A., Al-Misned, F., Al-Kahem Al-Balawi, H.F., Ahmad, Z.: Isolation and characterization of collagen from the waste material of two important freshwater fish species. J. Anim. Plant Sci. 24(6), 1802–1810 (2014). http://www.thejaps.org.pk/docs/v-24-6/33.pdf

  28. Trandafir, V., Popescu, G., Albu, M.G,., Iovu, H., Georgescu, M.: Bio- products based on collagen (“Bioproduse pe bazã de colagen”). Ars Docendi Publishing House, Bucharest, 119–147 (2007).

  29. Niculescu, M., Bajenaru, S., Gaidau, C., Simion, D., Filipescu, L.: Extraction of the protein components as amino-acids hydrolysates from chrome leather wastes through hydrolytic processes. Rev. Chim. 60, 1070–1078 (2009)

    Google Scholar 

  30. Riaz, T., Zeeshan, R., Zarif, F., Ilyas, K., Muhammad, N., Zaman Safi, S., Rahim, A., Rizvi, S.A.A., Ur Rehman, I.: FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 53(9), 703–746 (2018). https://doi.org/10.1080/05704928.2018.1426595

    Article  Google Scholar 

  31. Muyonga, J.H., Cole, C.G.B., Duodu, K.G.: Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 86, 325–332 (2004). https://doi.org/10.1016/j.foodchem.2003.09.038

    Article  Google Scholar 

  32. Rabotyagova, O.S., Cebe, P., David, L.: Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C. 28, 1420–1429 (2008). https://doi.org/10.1016/j.msec.2008.03.012

    Article  Google Scholar 

  33. Kelly, S.M., Price, N.C.: The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 1, 349–384 (2000). https://doi.org/10.2174/1389203003381315

    Article  Google Scholar 

  34. Yang, L., Yanwen, L., Zongliang, D., Guoying, L.: Comparison of dynamic denaturation temperature of collagen with its static denaturation temperature and the configuration characteristics in collagen denaturation processes. Thermochim. Acta. 469, 71–76 (2008). https://doi.org/10.1016/j.tca.2008.01.006

    Article  Google Scholar 

  35. Sun, L., Hou, H., Li, B., Zhang, Y.: Characterization of acid- and pepsin- soluble collagen extracted from the skin of Nile tilapia (Oreochromis niloticus). Int. J. Biol. Macromol. 99, 8–14 (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.057

    Article  Google Scholar 

  36. Woo, J.W., Yu, S.J., Cho, S.M., Lee, Y.B., Kim, S.B.: Extraction optimization and properties of collagen from yelowfin tuna (Thunnus albacares) dorsal skin. Food Hydrocoll. 22, 879–887 (2008). https://doi.org/10.1016/j.foodhyd.2007.04.015

    Article  Google Scholar 

  37. Hee-Seok, J., Jayachandran, V., Se-Kwon, K.: Isolation and characterization of collagen from marine fish (Thunnus obesus). Biotechnol. Bioprocess Eng. 18, 1185–1191 (2013). https://doi.org/10.1007/s12257-013-0316-2

    Article  Google Scholar 

  38. Yaowen, L., Donghui, M., Yihao, W., Wen, Q.: A comparative study of the properties and self-aggregation behavior of collagens from the scales and skin of grass carp (Ctenopharyngodon idella). Int. J. Biol. Macromol. 106, 516–522 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.044

    Article  Google Scholar 

  39. Zhang, H., Pan, D., Dong, Y., Su, W., Su, H., Wei, X., Yang, C., Jing, L., Tang, X., Li, X., Daqing, Z., Liwei, S., Bin, Q.: Transdermal permeation effect of collagen hydrolysates of deer sinew on mouse skin, ex vitro, and antioxidant activity, increased type I collagen secretion of percutaneous proteins in NIH/3T3 cells. J. Cosmet. Dermatol. 19(2), 519–528 (2019). https://doi.org/10.1111/jocd.13041

    Article  Google Scholar 

Download references

Acknowledgements

The work has been funded by the Operational Program Human Capital of the Ministry of European Funds through the Financial Agreement 51668/09.07.2019, SMIS code 124705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca Stan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 704 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dănilă, E., Stan, R., Kaya, M.A. et al. Valorization of Cyprinus Carpio Skin for Biocompatible Collagen Hydrolysates with Potential Application in Foods, Cosmetics and Pharmaceuticals. Waste Biomass Valor 13, 917–928 (2022). https://doi.org/10.1007/s12649-021-01569-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01569-w

Keywords

Navigation