Skip to main content

Advertisement

Log in

Bioconversion of Agave Bagasse to Produce Cellulases and Xylanases by Penicillium citrinum and Aspergillus fumigatus in Solid-State Fermentation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In Mexico, the generation of agave bagasse (AB) has increased considerably in recent years, given the growing global demand for tequila and other products from agave plants; around 45 thousand tons of AB are produced monthly only from tequila production. Despite the potential of AB to produce high-value metabolites, its use is limited. Several efforts have been made to mitigate the environmental problem caused by the final disposition of AB; however, the use of AB to produce enzymes has not been widely explored. This work presents a comparative analysis of the bioconversion of AB by Aspergillus fumigatus and Penicillium citrinum to produce cellulases and xylanases by solid-state fermentation, using wheat straw (WS) and sugarcane bagasse (SCB) as control feedstocks. The highest cellulase productions were obtained on AB with 10,112 and 7,347 U/kg of AB by P. citrinum and A. fumigatus, respectively. Regarding the xylanase production, the best producer was A. fumigatus (125,250 U/kg of WS), while the maximum xylanase production on AB was 28,974 U/kg of AB by P. citrinum. These results show the promising potential of AB to produce lignocellulase enzymes and open the vision towards implementing a circular economy strategy around the agave plant transformation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included this published article and its supplementary information files.

References

  1. Saldarriaga-Hernández, S., Velasco-Ayala, C., Leal-Isla Flores, P., de Jesús Rostro-Alanis, M., Parra-Saldivar, R., Iqbal, H.M.N., Carrillo-Nieves, D.: Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int. J. Biol. Macromol. 161, 1099–1116 (2020). Doi: https://doi.org/10.1016/j.ijbiomac.2020.06.047

  2. Singh, R., Kumar, M., Mittal, A., Mehta, P.K.: Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6, 1–15 (2016). Doi: https://doi.org/10.1007/s13205-016-0485-8

  3. Peña-Maravilla, M., Calixto-Romo, M.A., Guillen-Navarro, K., Sanchez, J., Amaya-Delgado, L.: Cellulases and xylanases production by Penicillium citrinum CGETCR using coffee pulp in solid state fermentation. Rev. Mex. Ing. Química. 16, 757–769 (2017)

    Google Scholar 

  4. Silva-Mendoza, J., Gómez-Treviño, A., López-Chuken, U., Blanco-Gámez, E.A., Chávez-Guerrero, L., Cantú-Cárdenas, M.E.: Agave Leaves as a Substrate for the Production of Cellulases by Penicillium sp . and the Obtainment of Reducing Sugars . J. Chem. 2020, 1–7 (2020). Doi: https://doi.org/10.1155/2020/6092165

  5. Sadh, P.K., Duhan, S., Duhan, J.S.: Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour. Bioprocess. 5, 1–15 (2018). https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  6. Hernández, C., Escamilla-Alvarado, C., Sánchez, A., Alarcón, E., Ziarelli, F., Musule, R., Valdez-Vazquez, I.: Wheat straw, corn stover, sugarcane, and Agave biomasses: chemical properties, availability, and cellulosic-bioethanol production potential in Mexico. Biofuels, Bioprod. Biorefining. 13, 1143–1159 (2019). Doi: https://doi.org/10.1002/bbb.2017

  7. Palomo-Briones, R., López-Gutiérrez, I., Islas-Lugo, F., Galindo-Hernández, K.L., Munguía-Aguilar, D., Rincón-Pérez, J.A., Cortés-Carmona, M.Á., Alatriste-Mondragón, F., Razo-Flores, E.: Agave bagasse biorefinery: processing and perspectives. Clean Technol. Environ. Policy. 20, 1423–1441 (2018). https://doi.org/10.1007/s10098-017-1421-2

    Article  Google Scholar 

  8. Sanchez, A., Sanchez, S., Dueñas, P., Hernandez-Sanchez, P., Guadalajara, Y.: The role of sustainability analysis in the revalorization of Tequila residues and wastes using biorefineries. Waste Biomass Valorization 11, 701–713 (2020). https://doi.org/10.1007/s12649-019-00756-0

    Article  Google Scholar 

  9. CRT: Consumo de Agave para tequila y tequila 100% de Agave. https://www.crt.org.mx/EstadisticasCRTweb/ (in Spanish) (2019). Accessed 26 September 2020

  10. Bala, A., Singh, B.: Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels. Renew. Energy. 136, 1231–1244 (2019). https://doi.org/10.1016/j.renene.2018.09.100

    Article  Google Scholar 

  11. Kumar, A., Rani, R., Pandey, A.: Chapter 2 - Production, Purification, and Application of Microbial Enzymes. In: Biotechnology of Microbial Enzymes. pp. 13–41. (2017)

  12. Steudler, S., Werner, A., Walther, T.: It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. In: Solid State Fermentation, pp. 51–81. Springer, Cham (2019)

  13. Dai, J., Bean, B., Brown, B., Bruening, W., Edwards, J., Flowers, M., Karow, R., Lee, C., Morgan, G., Ottman, M., Ransom, J., Wiersma, J.: Harvest index and straw yield of five classes of wheat. Biomass Bioenerg. 85, 223–227 (2016). https://doi.org/10.1016/j.biombioe.2015.12.023

    Article  Google Scholar 

  14. Townsend, T.J., Sparkes, D.L., Ramsden, S.J., Glithero, N.J., Wilson, P.: Wheat straw availability for bioenergy in England. Energy Policy. 122, 349–357 (2018). https://doi.org/10.1016/j.enpol.2018.07.053

    Article  Google Scholar 

  15. Contreras-Hernández, M.G., Aréchiga-Carvajal, E.T., Moreno-Jiménez, M.R., González-Herrera, S.M., López-Miranda, J., Prado-Barragán, L.A., Rutiaga-Quiñones, O.M.: Enzymatic potential of native fungal strains of Agave residues. BioResources 13, 569–585 (2018). https://doi.org/10.15376/biores.13.1.569-585

    Article  Google Scholar 

  16. Nava-Cruz, N.Y., Contreras-Esquivel, J.C., Aguilar-González, M.A., Nuncio, A., Rodríguez-Herrera, R., Aguilar, C.N.: Agave atrovirens fibers as substrate and support for solid-state fermentation for cellulase production by Trichoderma asperellum. 3 Biotech. 6, 115 (2016). https://doi.org/10.1007/s13205-016-0426-6

  17. Barbosa, F.C., Silvello, M.A., Goldbeck, R.: Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol. Lett. 42, 875–884 (2020). https://doi.org/10.1007/s10529-020-02875-4

    Article  Google Scholar 

  18. Taherzadeh, A., Panahi, R., Mokhtarani, B.: Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renew. Energy. 131, 946–955 (2019). https://doi.org/10.1016/j.renene.2018.07.130

    Article  Google Scholar 

  19. Molino, A., Larocca, V., Chianese, S., Musmarra, D.: Biofuels production by biomass gasification: a review. Energies. 11, 1–31 (2018). https://doi.org/10.3390/en11040811

    Article  Google Scholar 

  20. Bagewadi, Z.K., Mulla, S.I., Shouche, Y., Ninnekar, H.Z.: Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech. 6, 1–18. (2016). https://doi.org/10.1007/s13205-016-0484-9

  21. de Oliveira Rodrigues, P., dos Santos, B.V., Costa, L., Henrique, M.A., Pasquini, D., Baffi, M.A.: Xylanase and β-glucosidase production by Aspergillus fumigatus using commercial and lignocellulosic substrates submitted to chemical pre-treatments. Ind. Crops Prod. 95, 453–459 (2017). https://doi.org/10.1016/j.indcrop.2016.10.055

    Article  Google Scholar 

  22. dos Santos, B.V., Rodrigues, P.O., Albuquerque, C.J.B., Pasquini, D., Baffi, M.A.: Use of an (Hemi) Cellulolytic Enzymatic Extract Produced by Aspergilli Species Consortium in the Saccharification of Biomass Sorghum. Appl. Biochem. Biotechnol. 189, 37–48 (2019). https://doi.org/10.1007/s12010-019-02991-6

    Article  Google Scholar 

  23. Passos, D. de F., Pereira, N., Castro, A.M. de.: A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr. Opin. Green Sustain. Chem. 14, 60–66 (2018). https://doi.org/10.1016/j.cogsc.2018.06.003

  24. Binod, P., Gnansounou, E., Sindhu, R., Pandey, A.: Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour. Technol. Rep. 5, 317–325 (2019). https://doi.org/10.1016/j.biteb.2018.06.005

    Article  Google Scholar 

  25. Gloster, T.: Exploitation of carbohydrate processing enzymes in biocatalysis. Curr. Opin. Chem. Biol. 55, 180–188 (2020). https://doi.org/10.1016/j.cbpa.2020.01.015

    Article  Google Scholar 

  26. Olofsson, J., Barta, Z., Börjesson, P., Wallberg, O.: Integrating enzyme fermentation in lignocellulosic ethanol production: Life-cycle assessment and techno-economic analysis. Biotechnol. Biofuels 10, 1–14 (2017). https://doi.org/10.1186/s13068-017-0733-0

    Article  Google Scholar 

  27. Walia, A., Guleria, S., Mehta, P., Chauhan, A., Parkash, J.: Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. 7, 1–12. (2017). https://doi.org/10.1007/s13205-016-0584-6

  28. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Slui, J., ter, D. Templeton, and D.C.: Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP). TP-510-42618 (2012).

  29. Durand, A.: Bioreactor designs for solid state fermentation. Biochem. Eng. J. 13, 113–125 (2003). https://doi.org/10.1016/S1369-703X(02)00124-9

    Article  Google Scholar 

  30. Perez-Pimienta, J.A., Lopez-Ortega, M.G., Chavez-Carvayar, J.A., Varanasi, P., Stavila, V., Cheng, G., Singh, S., Simmons, B.A.: Characterization of agave bagasse as a function ofionic liquid pretreatment. Biomass Bioenergy 75, 180–188 (2015). https://doi.org/10.1016/j.biombioe.2015.02.026

    Article  Google Scholar 

  31. Rios-González, L.J., Morales-Martínez, T.K., Rodríguez-Flores, M.F., Rodríguez-De la Garza, J.A., Castillo-Quiroz, D., Castro-Montoya, A.J., Martinez, A.: Autohydrolysis pretreatment assessment in ethanol production from agave bagasse. Bioresour. Technol. 242, 184–190 (2017). https://doi.org/10.1016/j.biortech.2017.03.039

  32. Akula, S., Golla, N.: Significance of process parameters on fungal cellulase production. In: Biofuel Production Technologies: Critical Analysis for Sustainability, pp. 299–324. Springer, Singapore (2020)

  33. Khaleghian, H., Molaverdi, M., Karimi, K.: Silica removal from rice straw to improve its hydrolysis and ethanol production. Ind. Eng. Chem. Res. 56, 9793–9798 (2017). https://doi.org/10.1021/acs.iecr.7b02830

    Article  Google Scholar 

  34. Salazar-Leyva, J.A., Osuna-Ruiz, I., Rodríguez-Tirado, V.A., Zazueta-Patrón, I.E., Brito-Rojas, H.D.: Optimization study of fructans extraction from Agave tequilana weber azul variety. Food Sci. Technol. 36, 631–637 (2016). https://doi.org/10.1590/1678-457X.11216

    Article  Google Scholar 

  35. Rastegari, A.A.: Chapter 8—Molecular mechanism of cellulase production systems in Penicillium. In: New and Future Developments in Microbial Biotechnology and Bioengineering, pp. 153–166. Elsevier, Amsterdam (2018)

  36. Kapoor, M., Panwar, D., Kaira, G.S.: Chapter 3—Bioprocesses for Enzyme Production Using Agro-Industrial Wastes: Technical Challenges and Commercialization Potential. In: Agro-Industrial Wastes as Feedstock for Enzyme Production, pp. 61–93. (2016)

  37. Dilokpimol, A., Peng, M., Di Falco, M., Chin, A., Woeng, T., Hegi, R.M.W., Granchi, Z., Tsang, A., Hildén, K.S., Mäkelä, M.R., de Vries, R.P.: Penicillium subrubescens adapts its enzyme production to the composition of plant biomass. Bioresour. Technol. 311, 123477 (2020). https://doi.org/10.1016/j.biortech.2020.123477

    Article  Google Scholar 

  38. Novy, V., Nielsen, F., Seiboth, B., Nidetzky, B.: The influence of feedstock characteristics on enzyme production in Trichoderma reesei: A review on productivity, gene regulation and secretion profiles. Biotechnol. Biofuels. 12, 1–16 (2019). https://doi.org/10.1186/s13068-019-1571-z

    Article  Google Scholar 

  39. Dutta, T., Sahoo, R., Sengupta, R., Ray, S.S., Bhattacharjee, A., Ghosh, S.: Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J. Ind. Microbiol. Biotechnol. 35, 275–282 (2008). https://doi.org/10.1007/s10295-008-0304-2

    Article  Google Scholar 

  40. Gomes, A.F.S., dos Santos, B.S.L., Franciscon, E.G., Baffi, M.A.: Substract and temperature effect on xylanase production by Aspergillus fumigatus using low cost agricultural wastes. Biosci. J. 32(4), 915–921 (2016). https://doi.org/10.14393/bj-v32n4a2016-32935

    Article  Google Scholar 

  41. Carrillo-Nieves, D., Saldarriaga-Hernandez, S., Gutiérrez-Soto, G., Rostro-Alanis, M., Hernández-Luna, C., Alvarez, A.J., Iqbal, H.M.N., Parra-Saldívar, R.: Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste. Biomass Convers. Biorefinery. (2020). https://doi.org/10.1007/s13399-020-00738-6

    Article  Google Scholar 

  42. Lopes, A.M., Oliveira-Nascimento, L. de, Ribeiro, A., Tairum, C.A., Breyer, C.A., Oliveira, M.A. de, Monteiro, G., Souza-Motta, C.M. de, Magalhães, P. de O., Avendaño, J.G.F., Cavaco-Paulo, A.M., Mazzola, P.G., Rangel-Yagui, C. de O., Sette, L.D., Converti, A., Pessoa, A.: Therapeutic l-asparaginase: upstream, downstream and beyond. Crit. Rev. Biotechnol. 37, 82–99 (2017). Doi: https://doi.org/10.3109/07388551.2015.1120705

  43. Melicherová, K., Krahulec, J., Šafránek, M., Lišková, V., Hopková, D., Széliová, D., Turňa, J.: Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris. Appl. Microbiol. Biotechnol. 101, 1927–1934 (2017). https://doi.org/10.1007/s00253-016-7960-3

    Article  Google Scholar 

  44. das Neves, C.A., de Menezes, L.H.S., Soares, G.A., dos Santos Reis, N., Tavares, I.M.C., Franco, M., de Oliveira, J.R.: Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Convers. Biorefinery. (2020). https://doi.org/10.1007/s13399-020-00930-8

  45. Infanzón-Rodríguez, M.I., Ragazzo-Sánchez, J.A., del Moral, S., Calderón-Santoyo, M., Aguilar-Uscanga, M.G.: Production and characterization of an enzyme extract with cellulase activity produced by an indigenous strain of Fusarium verticillioides ITV03 using sweet sorghum bagasse. Biotechnol. Lett. 42, 2271–2283 (2020). https://doi.org/10.1007/s10529-020-02940-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Council of Science and Technology and Secretariat of Energy of Mexico for supporting this study through the Energy Sustainability Fund (FSE CONACYT-SENER). We thank our colleague Dr. Ángeles Calixto Romo from El Colegio de la Frontera Sur for the kindly donation of the fungus Penicillum citrinum CGETCR. We would also like to thank Montserrat del Socorro Valle Pérez for digital illustration of Fig. 6 and graphical abstract.

Funding

This study was funded by the Energy Sustainability Fund CONACYT-SENER [Project number 245750]. A.U. Valle-Pérez received a grant from the project 245750.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis and investigation, writing-original draft preparation, supervision: Lorena Amaya-Delgado and Alexander Uriel Valle-Pérez. Writing-review and editing: Lorena Amaya-Delgado, Guillermo Flores-Cosío and Alexander Uriel Valle-Pérez. Resources: Lorena Amaya-Delgado.

Corresponding author

Correspondence to L. Amaya-Delgado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle-Pérez, A.U., Flores-Cosío, G. & Amaya-Delgado, L. Bioconversion of Agave Bagasse to Produce Cellulases and Xylanases by Penicillium citrinum and Aspergillus fumigatus in Solid-State Fermentation. Waste Biomass Valor 12, 5885–5897 (2021). https://doi.org/10.1007/s12649-021-01397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01397-y

Keywords

Navigation