Skip to main content
Log in

Effect of the Organic Loading Rates Increase on Process Stability and Microbial Community Composition during the Anaerobic Digestion of Fresh Vinegar Residue

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Anaerobic digestion (AD) was employed to utilize fresh vinegar residue (FVR) in this study. The performance and microbial community structure at increasing organic loading rates (OLRs) were evaluated. The results showed that the mono-fermentation of FVR was unstable at high OLRs due to the high acidity and the high cellulose content of the raw material. The optimum OLR was 2.0 g VS/(L·d), with the maximum average methane yield at 216 mL /g VS. High OLRs (2.5 g VS/(L·d)) led to the irreversible inhibition of AD process, although digester ceased feeding during the recovering stage. The diversity of microbial community decreased at high OLRs. The relative abundance of major bacterial community at different OLRs also varied. The syntrophic volatile fatty acids (VFAs) oxidizing bacteria declined while the acid-producing bacteria became dominant. The close correlation between the AD process stability and the microbial community structure suggested that maintaining a rich and diverse microbial community was essential for the practical application of AD on vinegar residue (VR) utilization.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Feng, J.Y., Zhang, J.Y., Zhang, J.F., He, Y.F., Zhang, R.H., Chen, C., Liu, G.Q.: Enhanced methane production of vinegar residue by response surface methodology (RSM). AMB Express 7, 98–102 (2017)

    Article  Google Scholar 

  2. Feng, L., Li, Y.Q., Chen, C., Liu, X.Y., Xiao, X., Ma, X.X., Zhang, R.H., He, Y.F., Liu, G.Q.: Biochemical methane potential (BMP) of vinegar residue and the influence of feed to inoculum ratios on biogas production. BioResources 8, 2487–2498 (2013)

    Article  Google Scholar 

  3. Zhong, M., Wang, Y., Yu, J., Tian, Y.J., Xu, G.W.: Porous carbon from vinegar lees for phenol adsorption. Particuology 10, 35–41 (2012)

    Article  Google Scholar 

  4. Feng, J., Zhang, J., Zhang, J., He, Y., Zhang, R., Liu, G., Chen, C.: Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue. Waste Manage. 34, 630–637 (2016)

    Article  Google Scholar 

  5. Li, L., Feng, L., Zhang, R.H., He, Y.F., Chen, C., Liu, G.Q.: Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor. Bioresour. Technol. 186, 338–342 (2015)

    Article  Google Scholar 

  6. Shen, J., Zhao, C., Liu, G.Q., Chen, C.: Enhancing the performance on anaerobic digestion of vinegar residue by sodium hydroxide pretreatment. Waste Biomass Valorization 8, 1119–1126 (2017)

    Article  Google Scholar 

  7. Li, L., He, Q., Ma, Y., Wang, X.M., Peng, X.Y.: Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability. Bioresour. Technol. 189, 113–120 (2015)

    Article  Google Scholar 

  8. Baba, Y., Tada, C., Watanabe, R., Fukuda, Y., Chida, N., Nakai, Y.: Anaerobic digestion of crude glycerol from biodiesel manufacturing using a large-scale pilot plant: methane production and application of digested sludge as fertilizer. Bioresour. Technol. 140, 342–348 (2013)

    Article  Google Scholar 

  9. Zhi, S.L., Li, Q., Yang, F.X., Yang, Z.J.: How methane yield, crucial parameters and microbial communities respond to the stimulating effect of antibiotics during high solid anaerobic digestion. Bioresour. Technol. 283, 286–296 (2019)

    Article  Google Scholar 

  10. Lim, J.W., Chen, C.L., Ho, I.J.R., Wang, J.Y.: Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste. Bioresour. Technol. 147, 193–201 (2013)

    Article  Google Scholar 

  11. Nettmann, E., Bergmann, I., Mundt, K., Linke, B., Klocke, M.: Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. J. Microb. 105, 1835–1850 (2008)

    Google Scholar 

  12. Widder, S., Allen, R.J., Pfeiffer, T., Curtis, T.P., Wiuf, C., Sloan, W.T., Cordero, O.X., Brown, S.P., Momeni, B., Shou, W., Kettle, H., Flint, H.J., Haas, A.F., Laroche, B., Kreft, J.U., Rainey, P.B., Freilich, S., Schuster, S., Milferstedt, K., van der Meer, J.R., Groβkoft, T., Huisman, J., Free, A., Picioreanu, C., Quince, C., Klapper, I., Labarthe, S., Smets, B.F., Wang, H., Soyer, O.S.: Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 10, 2557–2568 (2016)

    Article  Google Scholar 

  13. Ran, G.Z., Li, D., Zheng, T., Liu, X.F., Chen, L., Cao, Q., Yan, Z.Y.: Hydrothermal pretreatment on the anaerobic digestion of washed vinegar residue. Bioresour. Technol. 248, 265–271 (2018)

    Article  Google Scholar 

  14. Walter, W.G.: Standard methods for the examination of waterand wastewater. American Public Health Association, Washington DC (1998)

    Google Scholar 

  15. Van Soest, P.J.: Use of detergents in analysis of fibrous feeds 2. A rapid method for determination of fiber and lignin. J. Assoc. Official Agr. Chem. 46, 829–832 (1963)

    Google Scholar 

  16. Li, D., Yuan, Z.H., Sun, Y.M., Ma, L.L.: Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW). Int. J. Hydrogen Energy 35, 8234–8240 (2010)

    Article  Google Scholar 

  17. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R.: UCHIMEimproves sensitivity andspeed of chimera detection. Bioinformatics 27, 2194–2200 (2011)

    Article  Google Scholar 

  18. Wang, Q., George, M.G., James, M.T., James, R.C.: Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007)

    Article  Google Scholar 

  19. Li, D., Chen, L., Liu, X.F., Mei, Z.L., Ren, H.W., Cao, Q., Yan, Z.Y.: Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresour. Technol. 245, 90–97 (2017)

    Article  Google Scholar 

  20. Hartmann, H., Ahring, B.K.: Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Waster Sci. Technol. 53, 7–22 (2006)

    Google Scholar 

  21. Zhao, X.L., Liu, J.H., Liu, J.J., Yang, F.Y., Zhu, W.B., Yuan, X.F., Hu, Y.G., Cui, Z.J., Wang, X.F.: Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 241, 349–359 (2017)

    Article  Google Scholar 

  22. Yi, J., Dong, B., Jin, J.W., Dai, X.H.: Effect of increasing total solidscontents on anaerobic digestionof food waste undermesophilic conditions: performance and microbialcharacteristicanalysis. PLoS ONE 9(7), e102548 (2014)

    Article  Google Scholar 

  23. Tkindaichi, T., Ito, T., Okabe, S.: Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl. Environ. Microbiol. 70, 1641–1650 (2004)

    Article  Google Scholar 

  24. Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., Li, T.L., Camacho, P., Sghir, A.: Towards the definition of a core of microorgaisms involved in anaerobic digestion of sludge. ISME J. 3, 700–714 (2009)

    Article  Google Scholar 

  25. Theuerl, S., Klang, J., Herermann, M., Vrieze, J.D.: Marker microbiome clusters are determined by operational parameters and specific key taxa combinations in anaerobic digestion. Bioresour. Technol. 263, 128–135 (2018)

    Article  Google Scholar 

  26. Gulhane, M., Pandit, P., Khardenavis, A., Singh, D., Pruohit, H.: Study of microbial community plasticity for anaerobic digestion of vegetable waste in anaerobic baffled reactor. Renew. Energy 101, 59–66 (2017)

    Article  Google Scholar 

  27. Zealand, A., Mei, R., Roskilly, A.P., Liu, W.T.: Molecular micronbialecology of stable versus failing rice straw anaerobic digetstion. Mircob. Biotechnol. 12(5), 879–891 (2019)

    Google Scholar 

  28. Liu, Y., Qiao, J.T., Yuan, X.Z., Guo, R.B., Qiu, Y.L.: Hydrogenisporaethanolica gen. nov., sp. nov., ananaerobiccarbohydrate-fermenting bacterium from anaerobic sludge. Int. J. Syst. Evol. Microbiol. 64, 1756–1762 (2014)

    Article  Google Scholar 

  29. Tang, Y.Q., Shigematsu, T., Morimura, S., Kida, K.: The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res. 38, 2537–2550 (2004)

    Article  Google Scholar 

  30. Gaston, L.W., Stadtman, E.R.: Fermentation of ethylene glycol byclostridium glycolicum, sp. J. Bacteriol. 85, 356–362 (1963)

    Article  Google Scholar 

  31. Du, Z.J., Wang, Y., Dunlap, C., Rooney, A.P., Chen, G.J.: Draconibacterium orentale gen. nov., sp. nov., isolated from twodistinct marine environments, and proposal ofDraconibacteriaceae fam. Int. J. Syst. Evol. Microbiol. 64, 1690–1696 (2014)

    Article  Google Scholar 

  32. Su, Y., Li, B., Zhu, W.Y.: Fecal microbiot of piglets prefer utilizing dl-lactate mixture as compared to d-lactate and l-lactate in vitro. Anerobe 19, 27–33 (2012)

    Article  Google Scholar 

  33. Bosshard, P.P., Zbinden, R., Altwegg, M.: Turicibacter sanguinis gen.nov., sp. nov., a novel anaerobic, gram-positive bacterium. Int. J. Syst. Evol. Microbiol. 52, 1263–1266 (2002)

    Google Scholar 

  34. Breitenstein, A., Wiegel, J., Haertig, C., Weiss, N., Andreesen, J.R., Lechner, U.: Reclassification of clostridium hydroxybenzoicum assedimentibacter hydroxybenzoicus gen. nov., comb. nov., anddescription of sedimentibacter saalensis sp. nov. Int. J. Syst. Evol. Microbiol. l52, 801–807 (2012)

    Google Scholar 

  35. Li, J., Wachemo, A.C., Yuan, H.R., Zuo, X.Y., Li, X.J.: Naturalfreezing-thawing pretreatment of cornstalk for enhancinganaerobic digestion performance. Bioresour. Technol. 288, 121518 (2019)

    Article  Google Scholar 

  36. Liu, Y., Whitman, W.B.: Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY. Acad. Sci. 1125, 171–189 (2008)

    Article  Google Scholar 

  37. Lin, J., Zuo, J., Ji, R.F., Chen, X.J., Liu, F.L., Wang, K.J., Yang, Y.F.: Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste. J. Environ. Sci. 24, 1288–1294 (2012)

    Article  Google Scholar 

  38. Frank-Whittle, I.H., Walter, A., Ebner, C., Insam, H.: Investigationinto the effect of high concentration of volatile fatty acids inanaerobic digestion on methanogenic communities. Waste Manage. 34, 2080–2089 (2014)

    Article  Google Scholar 

  39. Tejerizo, G.T., Kim, Y.S., Maus, I., Wibberg, D., Winkler, A., Off, S., Pühler, A., Scherer, P., Schlüter, A.: Genome sequence of methanobacterium congolense strain buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. J. Biotechnol. 247, 1–5 (2017)

    Article  Google Scholar 

  40. Razaviarani, V., Buchanan, I.D.: Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages. Bioresour. Technol. 172, 232–240 (2014)

    Article  Google Scholar 

  41. Kundu, I., Bergmann, I., Klocke, M., Sharma, S., Sreekrishnan, T.R.: Impact of abrupt temperature increase on the performance of an anaerobic hybrid bioreactor and its intrinsic microbial community. Bioresour. Technol. 168, 72–79 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Natural Science Foundation of China (51703014), National Key R and D Program of China (2018YFC1901203), Natural Science Foundation of Jiangsu Province (BK20160495), Science and Technology Planning Project of Guangdong Province (No. 2016A010105017) and (No.2017B040404009), Changzhou University (ZMF17020034), Jiangsu Innovation and Entrepreneurship Doctoral Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengzhong Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhou, G., Zheng, T. et al. Effect of the Organic Loading Rates Increase on Process Stability and Microbial Community Composition during the Anaerobic Digestion of Fresh Vinegar Residue. Waste Biomass Valor 12, 5505–5516 (2021). https://doi.org/10.1007/s12649-021-01389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01389-y

Keywords

Navigation