Skip to main content
Log in

Performance and Microbial Community Analysis of Anaerobic Digestion of Vinegar Residue with Adding of Acetylene Black or Hydrochar

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Conductive materials can accelerate and stabilize the conversion of organic substrates to biomethane via direct interspecies electron transfer (DIET). However, the potential effect of DIET on complex wastes, such as lignocellulosic biomass, is still unclear. In this study, acetylene black (AB) or hydrochar (HC) were used to enhance the anaerobic digestion (AD) performance of vinegar residue. Results found that methane yield was increased by 50% and 232% with adding 1.0 g/L of HC and AB, respectively. Higher electron conductivity (2.06 S/cm) and specific surface area (74.31 m2/g) of AB indicated effective syntrophic metabolism as compared to that of HC. Interestingly, mono-digestion of AB and HC can also produce methane, with CH4 yield of 23.8 and 118.2 mL/g, respectively. Microbial community analysis showed that family Syntrophomonadaceae and Methanosarcinaceae were enriched after adding of AB or HC, suggesting that the DIET might be facilitated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., Lovley, D.R.: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330(6009), 1413–1415 (2010)

    Article  Google Scholar 

  2. Storck, T., Virdis, B., Batstone, D.J.: Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME J. 10(3), 621–631 (2016)

    Article  Google Scholar 

  3. Chen, S., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Liu, F., Fan, W., Nevin, K.P., Lovley, D.R.: Promoting interspecies electron transfer with biochar. Sci. Rep. 4(5019), 5019 (2014)

    Google Scholar 

  4. Yan, W., Shen, N., Xiao, Y., Chen, Y., Sun, F., Kumar, V.T., Zhou, Y.: The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresour. Technol. 239, 336 (2017)

    Article  Google Scholar 

  5. Zhao, Z., Zhang, Y., Li, Y., Dang, Y., Zhu, T., Quan, X.: Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem. Eng. J. 313, 10–18 (2017)

    Article  Google Scholar 

  6. Dang, Y., Sun, D., Woodard, T.L., Wang, L.Y., Nevin, K.P., Holmes, D.E.: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials. Bioresour. Technol. 238, 30–38 (2017)

    Article  Google Scholar 

  7. Dang, Y., Holmes, D.E., Zhao, Z., Woodard, T.L., Zhang, Y., Sun, D., Wang, L.Y., Nevin, K.P., Lovley, D.R.: Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour. Technol. 220, 516–522 (2016)

    Article  Google Scholar 

  8. Lee, J.Y., Lee, S.H., Park, H.D.: Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresour. Technol. 205, 205–212 (2016)

    Article  Google Scholar 

  9. Kato, S., Hashimoto, K., Watanabe, K.: Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci USA 109(25), 10042–10046 (2012)

    Article  Google Scholar 

  10. Cruz, V.C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., Aulenta, F.: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 48(13), 7536–7543 (2014)

    Article  Google Scholar 

  11. Lovley, D.R.: Syntrophy goes electric: direct interspecies electron transfer. Annu. Rev. Microbiol. 71(1), 643 (2017)

    Article  Google Scholar 

  12. Tian, T., Qiao, S., Li, X., Zhang, M., Zhou, J.: Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour. Technol. 224, 41 (2016)

    Article  Google Scholar 

  13. Li, L.L., Tong, Z.H., Fang, C.Y., Chu, J., Yu, H.Q.: Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res. 70, 1–8 (2015)

    Article  Google Scholar 

  14. Huang, K.J., Liu, Y.J., Zhang, J.Z., et al: A sequence-specific DNA electrochemical sensor based on acetylene black incorporated two-dimensional CuS nanosheets and gold nanoparticles. Sens. Actuators B 209, 570–578 (2015)

    Article  Google Scholar 

  15. Li, Y., Feng, L., Zhang, R., He, Y., Liu, X., Xiao, X., Ma, X., Chen, C., Liu, G.: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover. Appl. Biochem. Biotechnol. 171(1), 117–127 (2013)

    Article  Google Scholar 

  16. Greenberg, A.E., Clesceri, L.S., Eaton, A.D.: Standard methods for the examination of water and wastewater. Am J Public Health Nations Health 56(3), 387–388 (1966). https://doi.org/10.2105/AJPH.56.4.684-a

    Article  Google Scholar 

  17. Rincón, B., Heaven, S., Banks, C.J., Yue, Z.: Anaerobic digestion of whole-crop winter wheat silage for renewable energy production. Energy Fuels 26(4), 2357–2364 (2012)

    Article  Google Scholar 

  18. Lin, R., Cheng, J., Zhang, J., Zhou, J., Cen, K., Murphy, J.D.: Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 239, 345 (2017)

    Article  Google Scholar 

  19. Raposo, F., Fernándezcegrí, V., De la Rubia, M.A., Fernández, B., Fernández-Polanco, M., Frigon, J.C.: Biochemicalmethane potential (BMP) of solid organic substrates. J. Chem. Technol. Biotechnol. 86(8), 1088–1098 (2011)

    Article  Google Scholar 

  20. Camargo-Valero, M.A., Ross, A.B., Aragon-Briceno, C.: Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy, 208, 1357–1369 (2017)

    Article  Google Scholar 

  21. Pu, C., Liu, H., Ding, G., Sun, Y., Yu, X., Chen, J., Ren, J., Gong, X.: Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. J. Hazard. Mater. 344, 441–449 (2017)

    Article  Google Scholar 

  22. Xie, S., Lawlor, P.G., Frost, J.P., Hu, Z., Zhan, X.: Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioresour. Technol. 102(10), 5728–5733 (2011)

    Article  Google Scholar 

  23. Li, Y., Zhang, R., Chen, C., Liu, G., He, Y., Liu, X.: Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour. Technol. 149(4), 406–412 (2013)

    Article  Google Scholar 

  24. Chen, S., Rotaru, A.E., Liu, F., Philips, J., Woodard, T.L., Nevin, K.P., Lovley, D.R.: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour. Technol. 173(1), 82 (2014)

    Article  Google Scholar 

  25. Liu, F., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Nevin, K.P., Lovley, D.R.: Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 5(10), 8982–8989 (2012)

    Article  Google Scholar 

  26. Zhang, J., Mao, F., Loh, K.C., Gin, Y.H., Dai, Y., Tong, Y.W.: Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes. Bioresour. Technol. 249, 729–736 (2018)

    Article  Google Scholar 

  27. Li, X., Kang, F., Shen, W.: Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2 cathode for rechargeable lithium batteries. Carbon 44(7), 1334–1336 (2006)

    Article  Google Scholar 

  28. Chen, X., Lin, Q., He, R., Zhao, X., Li, G.: Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour Technol 241, 236–243 (2017). https://doi.org/10.1016/j.biortech.2017.04.012

    Article  Google Scholar 

  29. Liang, L., Hu, G., Cao, Y., Du, K., Peng, Z.: Synthesis and characterization of full concentration-gradient LiNi0.7Co0.1Mn0.2O2 cathode material for lithium-ion batteries. J. Alloys Compds. 635, 92–100 (2015)

    Article  Google Scholar 

  30. Li, Y., Zhang, R., Liu, G., Chang, C., He, Y., Liu, X.: Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour. Technol. 149(12), 565–569 (2013)

    Article  Google Scholar 

  31. Baek, G., Kim, J., Kim, J., Lee, C.: Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies 11(1), 107 (2018)

    Article  Google Scholar 

  32. Viggi, C.C., Simonetti, S., Palma, E., Pagliaccia, P., Braguglia, C., Fazi, S., Baronti, S., Navarra, M.A., Pettiti, I., Koch, C.: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar. Biotechnol. Biofuels 10(1), 303 (2017)

    Article  Google Scholar 

  33. Walker, D.J., Adhikari, R.Y., Holmes, D.E., Ward, J.E., Woodard, T.L., Nevin, K.P., Lovley, D.R.: Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 12(1), 48 (2017)

    Article  Google Scholar 

  34. Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P.: Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6(9), 573–579 (2011)

    Article  Google Scholar 

  35. Lee, Y.J., Romanek, C.S., Wiegel, J.: Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment. Int. J. Syst. Evol. Microbiol. 57(Pt 2), 311–315 (2007)

    Article  Google Scholar 

  36. Freguia, S., Teh, E.H., Boon, N., Leung, K.M., Keller, J., Rabaey, K.: Microbial fuel cells operating on mixed fatty acids. Bioresour. Technol. 101(4), 1233–1238 (2010)

    Article  Google Scholar 

  37. Lovley, D.R.: Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4(7), 497 (2006)

    Article  Google Scholar 

  38. Bouanane-Darenfed, A., Fardeau, M.L., Ollivier, B.: The Family Caldicoprobacteraceae. (2014, pp. 13–17

  39. Paul, S.S., Deb, S.M., Punia, B.S., Singh, D., Kumar, R.: Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes. J. Sci. Food Agric. 90(7), 1218 (2010)

    Article  Google Scholar 

  40. Müller, N., Schleheck, D., Schink, B.: Involvement of NADH:acceptor oxidoreductase and butyryl coenzyme A dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. J. Bacteriol. 191(19), 6167 (2009)

    Article  Google Scholar 

  41. Kong, X., Yu, S., Fang, W., Liu, J., Li, H.: Enhancing syntrophic associations among Clostridium butyricum, Syntrophomonas and two types of methanogen by zero valent iron in an anaerobic assay with a high organic loading. Bioresour. Technol. 257, 181 (2018)

    Article  Google Scholar 

  42. Xu, S., He, C., Luo, L., Lü, F., He, P., Cui, L.: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresour. Technol. 196, 606–612 (2015)

    Article  Google Scholar 

  43. Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., Lovley, D.R.: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80(15), 4599–4605 (2014)

    Article  Google Scholar 

  44. Frankewhittle, I.H., Walter, A., Ebner, C., Insam, H.: Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 34(11), 2080–2089 (2014)

    Article  Google Scholar 

  45. Zhao, Z., Zhang, Y., Woodard, T.L., Nevin, K.P., Lovley, D.R.: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 191, 140 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51508572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeqing Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Li, Y., Zhao, K. et al. Performance and Microbial Community Analysis of Anaerobic Digestion of Vinegar Residue with Adding of Acetylene Black or Hydrochar. Waste Biomass Valor 11, 3315–3325 (2020). https://doi.org/10.1007/s12649-019-00664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00664-3

Keywords

Navigation