Skip to main content
Log in

Pyrolysis-GCMS as a Tool for Maturity Evaluation of Compost from Sewage Sludge and Green Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The objective of the study was to characterise co-composting dynamics and maturity of the end products of sewage sludge/ green waste mixtures. We analysed all initial substrates and co-composts, sampled at different composting times for studying (1) physicochemical parameters and (2) organic matter biodegradation and biotransformation using pyrolysis coupled to gas chromatography and mass spectrometry. Physicochemical analysis indicated compost maturity of the three co-composting mixtures after 200 days. Pyrolysis-GCMS showed that organic matter in sewage sludge generated a large number of different pyrolysis products, most of which had unspecific origin. The pyrolysis products of the three co-compost were classified according to their chemical composition (benzene derivatives, N-containing compounds, phenol derivatives, furan derivates) and according to their chemical structure (polyaromatics, aromatics compounds and aliphatic compounds). These compound classes evolved differently during composting. We suggest two new specific ratios of peak areas from pyrolysis products to describe the biodegradation and to evaluate the degree of maturity during co-composting sludge-green waste: (1) the ratio benzene, methyl (methylethenyl) /benzene, which decrease during composting, and (2) the ratio of Indene/2-methoxy-4 vinyl-phenol which increase during composting. The good correlation between these ratios and physico-chemical parameters confirms their usefulness to evaluate the co-compost maturity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh, R.P., Agrawal, M.: Potential benefits and risks of land application of sewage sludge. Waste Manag. 28, 347–358 (2008). https://doi.org/10.1016/j.wasman.2006.12.010

    Article  Google Scholar 

  2. Alves, D., Villar, I., Mato, S.: Thermophilic composting of hydrocarbon residue with sewage sludge and fish sludge as cosubstrates: microbial changes and TPH reduction. J. Environ. Manag. 239, 30–37 (2019). https://doi.org/10.1016/j.jenvman.2019.03.028

    Article  Google Scholar 

  3. Barthod, J., Rumpel, C., Calabi-Floody, M., Mora, M.L., Bolan, N.S., Dignac, M.F.: Adding worms during composting of organic waste with red mud and fly ash reduces CO2 emissions and increases plant available nutrient contents. J. Environ. Manag. 222, 207–215 (2018). https://doi.org/10.1016/j.jenvman.2018.05.079

    Article  Google Scholar 

  4. Hernadez, T., Masciandaro, G., Moreno, J.I., Garcia, C.: Changes in organic matter composition during composting of two digested sewage sludges. Waste Manag. 26, 1370–1376 (2006). https://doi.org/10.1016/j.wasman.2005.10.006

    Article  Google Scholar 

  5. Grube, M., Lin, J.G., Lee, P.H., Kokorevicha, S.: Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130, 324–333 (2006). https://doi.org/10.1016/j.geoderma.2005.02.005

    Article  Google Scholar 

  6. Fullana, A., Conesa, J.A., Font, R., Martín-Gullón, I.: Pyrolysis of sewage sludge: nitrogenated compounds and pretreatment effects. J. Anal. Appl. Pyrolysis. 68–69, 561–575 (2003). https://doi.org/10.1016/S0165-2370(03)00052-4

    Article  Google Scholar 

  7. Dignac, M.F., Houot, S., Francou, C., Derenne, S.: Pyrolytic study of compost and waste organic matter. Org. Geochem. 36, 1054–1071 (2005). https://doi.org/10.1016/j.orggeochem.2005.02.007

    Article  Google Scholar 

  8. Pognani, M., Barrena, R., Font, X., Adani, F., Scaglia, B., Sánchez Antoni, A.: Evolution of organic matter in a full-scale composting plant for the treatment of sewage sludge and biowaste by respiration techniques and pyrolysis-GC/MS. Bioresour. Technol. 102, 4536–4543 (2011). https://doi.org/10.1016/j.biortech.2010.12.108

    Article  Google Scholar 

  9. El Fels, L., Lemee, L., Ambles, A., Hafidi, M.: Identification and biotransformation of lignin compounds during co-composting of sewage sludge-palm tree waste using pyrolysis-GC/MS. Int. Biodeterior. Biodegrad. 92, 26–35 (2014). https://doi.org/10.1016/j.ibiod.2014.04.001

    Article  Google Scholar 

  10. González-Pérez, J.A., Almendros, G., De La Rosa, J.M., González-Vila, F.J.: Appraisal of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices by analytical pyrolysis (Py-GC/MS). J. Anal. Appl. Pyrolysis 109, 1–8 (2014). https://doi.org/10.1016/j.jaap.2014.07.005

    Article  Google Scholar 

  11. El Fels, L., Lemee, L., Ambles, A., Hafidi, M.: Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-date palm waste using pyrolysis-GC/MS technique. Environ. Sci. Pollut. Res. 23, 16857–16864 (2016). https://doi.org/10.1007/s11356-016-6670-9

    Article  Google Scholar 

  12. AFNOR: Association Française de Normalisation. NF EN 13040. AFNOR, Paris (2000)

    Google Scholar 

  13. El Hayany, B., Glaoui, E.M.E., Rihanni, G., Ezzariai, M., El Faiz, A., Gharous, A.El, Hafidi, M., Fels, M.El: L.: Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate. Environ. Sci. Pollut. Res. 25, 10988–10996 (2018). https://doi.org/10.1007/s11356-017-1066-z

    Article  Google Scholar 

  14. Quénéa, K., Mathieu, J., Derenne, S.: Soil lipids from accelerated solvent extraction: influence of temperature and solvent on extract composition. Org. Geochem. 44, 45–52 (2012). https://doi.org/10.1016/j.orggeochem.2011.11.009

    Article  Google Scholar 

  15. El Fels, L., Zamama, M., El Asli, A., Hafidi, M.: Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. Int. Biodeterior. Biodegrad. 87, 128–137 (2014). https://doi.org/10.1016/j.ibiod.2013.09.024

    Article  Google Scholar 

  16. Dignac, M.F., Houot, S., Derenne, S.: How the polarity of the separation column may influence the characterization of compost organic matter by pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 75, 128–139 (2006). https://doi.org/10.1016/j.jaap.2005.05.001

    Article  Google Scholar 

  17. Watteau, F., Dignac, M.-F., Bouchard, A., Revallier, A., Houot, S.: Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Front. Sustain. Food Syst. 2, 14 (2018). https://doi.org/10.3389/fsufs.2018.00081

    Article  Google Scholar 

  18. Wu, J., Zhao, Y., Qi, H., Zhao, X., Yang, T., Du, Y., Zhang, H., Wei, Z.: Identifying the key factors that affect the formation of humic substance during different materials composting. Bioresour. Technol. 244, 1193–1196 (2017). https://doi.org/10.1016/j.biortech.2017.08.100

    Article  Google Scholar 

  19. El Fels, L., Ouhdouch, Y., Hafidi, M.: Use of the co-composting time extract agar to evaluate the microbial community changes during the co-composting of activated sludge and date palm waste. Int. J. Recycl. Org. Waste Agric. 4, 95–103 (2015). https://doi.org/10.1007/s40093-015-0089-z

    Article  Google Scholar 

  20. El Glauoi, M.E., El Hayany, G., Fels, BEl., El Faiz, L., Ezzariai, A., Rihani, A., Lebrihi, M., Bekkaoui, A., Hafidi, F.: Physico-chemical and spectroscopy assessment of sludge biodegradation during semi-industrial composting under semi-arid climate. Waste Biomass Valoriz. 11, 1217–1228 (2018). https://doi.org/10.1007/s12649-018-0442-3

    Article  Google Scholar 

  21. Piccolo, A.: The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv. Agronomy 75, 57–134 (2002). https://doi.org/10.1016/S0065-2113(02)75003-7

    Article  Google Scholar 

  22. Gea, T., Ferrer, P., Alvaro, G., Valero, F., Artola, A., Sánchez, A.: Co-composting of sewage sludge:fats mixtures and characteristics of the lipases involved. Biochem. Eng. J. 33, 275–283 (2007). https://doi.org/10.1016/j.bej.2006.11.007

    Article  Google Scholar 

  23. Fabbri, D.: Use of pyrolysis-gas chromatography/mass spectrometry to study environmental pollution caused by synthetic polymers: a case study: the Ravenna Lagoon. J. Anal. Appl. Pyrolysis 58–59, 361–370 (2001). https://doi.org/10.1016/S0165-2370(00)00170-4

    Article  Google Scholar 

  24. Nierop, K.G.J., Pulleman, M.M., Marinissen, J.C.Y.: Management induced organic matter differentiation in grassland and arable soil: a study using pyrolysis techniques. Soil Biol. Biochem. 33, 755–764 (2001). https://doi.org/10.1016/S0038-0717(00)00223-6

    Article  Google Scholar 

  25. González-Vila, F.J., González-Pérez, J.A., Akdi, K., Gómis, M.D., Pérez-Barrera, F., Verdejo, T.: Assessing the efficiency of urban waste biocomposting by analytical pyrolysis (Py-GC/MS). Bioresour. Technol. 100, 1304–1309 (2009). https://doi.org/10.1016/j.biortech.2008.06.067

    Article  Google Scholar 

  26. Huang, Y., Li, B., Bryant, C., Bol, R., Eglinton, G.: Radiocarbon dating of aliphatic hydrocarbons a new approach for dating passive-fraction carbon in soil horizons. Soil Sci. Soc. Am. J. 63, 1181–1187 (1999). https://doi.org/10.2136/sssaj1999.6351181x

    Article  Google Scholar 

  27. Asperger, A., Engewald, W., Fabian, G.: Analytical characterization of natural waxes employing pyrolysis-gas chromatography-mass spectrometry. J. Anal. Appl. Pyrolysis 50, 103–115 (1999). https://doi.org/10.1016/S0165-2370(99)00031-5

    Article  Google Scholar 

  28. Maher, K.D., Bressler, D.C.: Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol. 98, 2351–2368 (2007). https://doi.org/10.1016/j.biortech.2006.10.025

    Article  Google Scholar 

  29. Macheix, J., Fleuriet, A., Jay-Allemand, C.: Les composés phénoliques des végétaux. Presses Polytechniques et Universitaires Romandes, Lausanne (2005)

    Google Scholar 

  30. Göbbels, F.J., Püttmann, W.: Structural investigation of isolated aquatic fulvic and humic acids in seepage water of waste deposits by pyrolysis-gas chromatography/mass spectrometry. Water Res. 31, 1609–1618 (1997). https://doi.org/10.1016/S0043-1354(96)00405-8

    Article  Google Scholar 

  31. Fuentes, M., Baigorri, R., González-Vila, F.J., González-Gaitano, G., García-Mina, J.M.: Pyrolysis–gas chromatography/mass spectrometry identification of distinctive structures providing humic character to organic materials. J. Environ. Qual. 39, 1486 (2010). https://doi.org/10.2134/jeq2009.0180

    Article  Google Scholar 

  32. Wang, K., He, C., You, S., Liu, W., Wang, W., Zhang, R., Qi, H., Ren, N.: Transformation of organic matters in animal wastes during composting. J. Hazard. Mater. 300, 745–753 (2015). https://doi.org/10.1016/j.jhazmat.2015.08.016

    Article  Google Scholar 

  33. Dignac, M.F., Pechot, N., Thevenot, M., Lapierre, C., Bahri, H., Bardoux, G., Rumpel, C.: Isolation of soil lignins by combination of ball-milling and cellulolysis: evaluation of purity and isolation efficiency with pyrolysis/GC/MS. Anal. Appl. Pyrolysis 85, 426–430 (2009). https://doi.org/10.1016/j.jaap.2008.10.012

    Article  Google Scholar 

  34. Tsuge, S., Matsubara, H.: High-resolution pyrolysis-gas chromatography of proteins and related materials. J. Anal. Appl. Pyrolysis 8, 49–64 (1985). https://doi.org/10.1016/0165-2370(85)80014-0

    Article  Google Scholar 

  35. Chiavari, G., Galletti, G.C.: Pyrolysis-gas chromatography/mass spectrometry of amino acids. J. Anal. Appl. Pyrolysis 24, 123–137 (1992). https://doi.org/10.1016/0165-2370(92)85024-F

    Article  Google Scholar 

  36. Veeken, A., Nierop, K., Wilde, V., De Hamelers, B.: Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresour. Technol. 72, 33–41 (2000). https://doi.org/10.1016/S0960-8524(99)90096-2

    Article  Google Scholar 

  37. García, C., Herñandez, T., Costa, F., Ceccanti, B., Calcinai, M.: A chemical-structural study of organic wastes and their humic acids during composting by means of pyrolysis-gas chromatography. Sci. Total Environ. 119, 157–168 (1992). https://doi.org/10.1016/0048-9697(92)90261-P

    Article  Google Scholar 

  38. Masciandaro, G., Ceccanti, B., Garcı´a, C.: Humic acids formation from straw during aerobic and anaerobic–aerobic processes. In: Senesi, N., Miano, T.M. (eds.) Humic substances in the global environment and implications on human health, pp. 521–526. Elsevier, Amsterdam (1994)

    Google Scholar 

Download references

Acknowledgements

This work is part of the project Research and Development «BOCOMPOSOL » funded by the Moroccan Ministry of the Environment, and it is supported by «Centre National de la Recherche Scientifique et Technique » in Morocco (Bourse d’excellence édition 2017, 8UCA2017), and by Erasmus + program: Paris-Sorbonne University, Pierre et Marie Curie & Cadi Ayyad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loubna El Fels.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hayany, B., El Fels, L., Dignac, MF. et al. Pyrolysis-GCMS as a Tool for Maturity Evaluation of Compost from Sewage Sludge and Green Waste. Waste Biomass Valor 12, 2639–2652 (2021). https://doi.org/10.1007/s12649-020-01184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01184-1

Keywords

Navigation