Skip to main content
Log in

A Comprehensive Comparison of Methane and Bio-Based Volatile Fatty Acids Production from Urban and Agro-Industrial Sources

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, a systematic comparison between methanogenic and acidogenic potential tests of five waste streams from urban and agro-industrial origin was investigated. Methanogenic potential tests were performed under neutral pH (7.0) and thermophilic temperature (55°C). Additionally, acidogenic potential tests consisted of mono-fermentation tests at acidic pH (5.5) and co-fermentation tests performed at alkaline pH (9.0), under thermophilic temperature (55 °C). The methanogenic yield increased up to 0.54 gCH4 g−1 CODfed while the acidogenic yield ranged within 0.04–0.24 g VFA g−1 CODfed. The VFA (volatile fatty acids) yield was boosted when adding co-substrates that complemented the optimal C/N balance, i.e. 0.27–0.36 gVFA g−1 CODfed. Herein, highest total volatile fatty acid (tVFA) concentration was attained by microalgae biomass (MB), with 8769 mg COD L−1. During mono-fermentation tests under acid pH, butyric acid was promoted as main fermentation product, which varied between 1526 and 6114 mg COD L −1, whereas shifting to alkaline pH in co-fermentation tests promoted acetic production, from 3387 to 5415 mg COD L−1. The results of the current research revealed a significant potential of organic waste to enrich the carboxylic platform (e.g. acetic and butyric acids), which have higher industrial applicability and economic potential than methane.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bolzonella, D., Fatone, F., Pavan, P., Cecchi, F.: Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind. Eng. Chem. Res. 44, 3412–3418 (2005). https://doi.org/10.1021/ie048937m

    Article  Google Scholar 

  2. Moretto, G., Russo, I., Bolzonella, D., Pavan, P., Majone, M., Valentino, F.: An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Res. 170, 115371 (2020). https://doi.org/10.1016/j.watres.2019.115371

    Article  Google Scholar 

  3. Nizami, A.S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O.K.M., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro, M., Ismail, I.M.I., Pant, D.: Waste biorefineries: Enabling circular economies in developing countries. Bioresour. Technol. 241, 1101–1117 (2017). https://doi.org/10.1016/j.biortech.2017.05.097

    Article  Google Scholar 

  4. Strazzera, G., Battista, F., Garcia, N.H., Frison, N., Bolzonella, D.: Volatile fatty acids production from food wastes for biorefinery platforms: a review. J. Environ. Manage. 226, 278–288 (2018). https://doi.org/10.1016/j.jenvman.2018.08.039

    Article  Google Scholar 

  5. Bastidas-Oyanedel, J.R., Schmidt, J.E.: Increasing profits in food waste biorefinery-a techno-economic analysis. Energies (2018). https://doi.org/10.3390/en11061551

    Article  Google Scholar 

  6. Bonk, F., Bastidas-Oyanedel, J.R., Yousef, A.F., Schmidt, J.E., Bonk, F.: Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresour. Technol. 238, 416–424 (2017). https://doi.org/10.1016/j.biortech.2017.04.057

    Article  Google Scholar 

  7. Bastidas-Oyanedel, J.R., Mohd-Zaki, Z., Zeng, R.J., Bernet, N., Pratt, S., Steyer, J.P., Batstone, D.J.: Gas controlled hydrogen fermentation. Bioresour. Technol. 110, 503–509 (2012). https://doi.org/10.1016/j.biortech.2012.01.122

    Article  Google Scholar 

  8. Worwag, M., Kwarciak-Kozłowska, A.: Volatile fatty acid (VFA) yield from sludge anaerobic fermentation through a biotechnological approach. In: Prasad, M. (ed.) Industrial and Municipal Sludge, pp. 681–703. Elsevier, New York (2019)

    Chapter  Google Scholar 

  9. Jankowska, E., Duber, A., Chwialkowska, J., Stodolny, M., Oleskowicz-Popiel, P.: Conversion of organic waste into volatile fatty acids—the influence of process operating parameters. Chem. Eng. J. 345, 395–403 (2018). https://doi.org/10.1016/j.cej.2018.03.180

    Article  Google Scholar 

  10. Yousuf, A., Bastidas-Oyanedel, J.R., Schmidt, J.E.: Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. Waste Manag. 77, 516–521 (2018). https://doi.org/10.1016/j.wasman.2018.04.035

    Article  Google Scholar 

  11. Garcia-Aguirre, J., Alvarado-Morales, M., Fotidis, I.A., Angelidaki, I.: Up-concentration of succinic acid, lactic acid, and ethanol fermentations broths by forward osmosis. Biochem. Eng. J. 155, 107482 (2020). https://doi.org/10.1016/j.bej.2019.107482

    Article  Google Scholar 

  12. Li, C., Ong, K.L., Yang, X., Lin, C.S.K.: Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control. Chem. Eng. J. 371, 804–812 (2019). https://doi.org/10.1016/j.cej.2019.04.092

    Article  Google Scholar 

  13. Arslan, D., Steinbusch, K.J.J., Diels, L., Hamelers, H.V.M., Strik, D.P.B.T.B., Buisman, C.J.N., De Wever, H.: Selective short-chain carboxylates production: a review of control mechanisms to direct mixed culture fermentations. Crit. Rev. Environ. Sci. Technol. 46, 592–634 (2016). https://doi.org/10.1080/10643389.2016.1145959

    Article  Google Scholar 

  14. Gonzalez-Garcia, R., McCubbin, T., Navone, L., Stowers, C., Nielsen, L., Marcellin, E.: Microbial propionic acid production. Fermentation 3, 21 (2017). https://doi.org/10.3390/fermentation3020021

    Article  Google Scholar 

  15. Zhang, P., Chen, Y., Huang, T.Y., Zhou, Q.: Waste activated sludge hydrolysis and short-chain fatty acids accumulation in the presence of SDBS in semi-continuous flow reactors: effect of solids retention time and temperature. Chem. Eng. J. 148, 348–353 (2009). https://doi.org/10.1016/j.cej.2008.09.007

    Article  Google Scholar 

  16. Wu, Y., Ma, H., Zheng, M., Wang, K.: Bioresource Technology Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresour. Technol. 191, 53–58 (2015). https://doi.org/10.1016/j.biortech.2015.04.100

    Article  Google Scholar 

  17. Babaei, M., Tsapekos, P., Alvarado-Morales, M., Hosseini, M., Ebrahimi, S., Niaei, A., Angelidaki, I.: Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochem. Eng. J. (2019). https://doi.org/10.1016/j.bej.2019.04.012

    Article  Google Scholar 

  18. Liu, H., Wang, J., Liu, X., Fu, B., Chen, J., Yu, H.Q.: Acidogenic fermentation of proteinaceous sewage sludge: effect of pH. Water Res. 46, 799–807 (2012). https://doi.org/10.1016/j.watres.2011.11.047

    Article  Google Scholar 

  19. Garcia-Aguirre, J., Aymerich, E., González-Mtnez de Goñi, J., Esteban-Gutiérrez, M.: Selective VFA production potential from organic waste streams: assessing temperature and pH influence. Bioresour. Technol. 244, 1081–1088 (2017). https://doi.org/10.1016/j.biortech.2017.07.187

    Article  Google Scholar 

  20. Mahboubi, A., Parchami, M., Taherzadeh, M.J., Wainaina, S., Horváth, I.S.: Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour. Technol. 274, 329–334 (2018). https://doi.org/10.1016/j.biortech.2018.11.104

    Article  Google Scholar 

  21. Liu, H., Wang, L., Zhang, X., Fu, B., Liu, H., Li, Y., Lu, X.: A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor. J. Hazard. Mater. 365, 912–920 (2019). https://doi.org/10.1016/j.jhazmat.2018.11.082

    Article  Google Scholar 

  22. Anjum, A., Zuber, M., Zia, K.M., Noreen, A., Anjum, M.N., Tabasum, S.: Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89, 161–174 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  Google Scholar 

  23. Rodriguez-Perez, S., Serrano, A., Pantión, A.A., Alonso-Fariñas, B.: Challenges of scaling-up PHA production from waste streams. A review. J. Environ. Manag. 205, 215–230 (2018). https://doi.org/10.1016/j.jenvman.2017.09.083

    Article  Google Scholar 

  24. Tang, J., Wang, X.C., Hu, Y., Pu, Y., Huang, J., Ngo, H.H., Zeng, Y., Li, Y.: Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment. Bioresour. Technol. 271, 125–135 (2019). https://doi.org/10.1016/j.biortech.2018.09.087

    Article  Google Scholar 

  25. Liu, H., Han, P., Liu, H., Zhou, G., Fu, B., Zheng, Z.: Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour. Technol. 260, 105–114 (2018). https://doi.org/10.1016/j.biortech.2018.03.105

    Article  Google Scholar 

  26. Cai, L., Zhang, H., Feng, Y., Wang, Y., Yu, M.: Sludge decrement and electricity generation of sludge microbial fuel cell enhanced by zero valent iron. J. Clean. Prod. 174, 35–41 (2018). https://doi.org/10.1016/j.jclepro.2017.10.300

    Article  Google Scholar 

  27. Morgan-Sagastume, F., Hjort, M., Cirne, D., Gérardin, F., Lacroix, S., Gaval, G., Karabegovic, L., Alexandersson, T., Johansson, P., Karlsson, A., Bengtsson, S., Arcos-Hernández, M.V., Magnusson, P., Werker, A.: Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour. Technol. 181, 78–89 (2015). https://doi.org/10.1016/j.biortech.2015.01.046

    Article  Google Scholar 

  28. Tamis, J., Lužkov, K., Jiang, Y., Loosdrecht va, M.C.M., Kleerebezem, R.: Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J. Biotechnol. 192, 161–169 (2014). https://doi.org/10.1016/j.jbiotec.2014.10.022

    Article  Google Scholar 

  29. Jankowska, E., Chwialkowska, J., Stodolny, M., Oleskowicz-Popiel, P.: Volatile fatty acids production during mixed culture fermentation—the impact of substrate complexity and pH. Chem. Eng. J. 326, 901–910 (2017). https://doi.org/10.1016/j.cej.2017.06.021

    Article  Google Scholar 

  30. Perimenis, A., Nicolay, T., Leclercq, M., Gerin, P.A.: Comparison of the acidogenic and methanogenic potential of agroindustrial residues. Waste Manag. 72, 178–185 (2018). https://doi.org/10.1016/j.wasman.2017.11.033

    Article  Google Scholar 

  31. Tampio, E.A., Blasco, L., Vainio, M.M., Kahala, M.M., Rasi, S.E.: Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes. GCB Bioenergy. 11, 72–84 (2019). https://doi.org/10.1111/gcbb.12556

    Article  Google Scholar 

  32. Esteban-Gutiérrez, M., Garcia-Aguirre, J., Irizar, I., Aymerich, E.: From sewage sludge and agri-food waste to VFA: individual acid production potential and up-scaling. Waste Manag. 77, 203–212 (2018). https://doi.org/10.1016/j.wasman.2018.05.027

    Article  Google Scholar 

  33. Van-Aarle, I.M., Perimenis, A., Lima-Ramos, J., de Hults, E., George, I.F., Gerin, P.A.: Mixed inoculum origin and lignocellulosic substrate type both influence the production of volatile fatty acids during acidogenic fermentation. Biochem. Eng. J. 103, 242–249 (2015). https://doi.org/10.1016/j.bej.2015.07.016

    Article  Google Scholar 

  34. APHA: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington (2005)

    Google Scholar 

  35. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009). https://doi.org/10.2166/wst.2009.040

    Article  Google Scholar 

  36. Franco, A., Mosquera-Corral, A., Campos, J.L., Roca, E.: Learning to Operate Anaerobic Bioreactors, pp. 618–627. University of Santiago, Santiago (2007)

    Google Scholar 

  37. Eastman, J.A., Ferguson, J.F.: Solubilization organic phase of of carbon anaerobic particulate during the digestion acid. J. Water Pollut. Control Fed. 53, 352–366 (1981)

    Google Scholar 

  38. Ponsá, S., Gea, T., Sánchez, A.: Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst. Eng. 108, 352–360 (2011). https://doi.org/10.1016/j.biosystemseng.2011.01.007

    Article  Google Scholar 

  39. Zhang, L., Zeng, G., Dong, H., Chen, Y., Zhang, J., Yan, M., Zhu, Y., Yuan, Y., Xie, Y., Huang, Z.: The impact of silver nanoparticles on the co-composting of sewage sludge and agricultural waste: Evolutions of organic matter and nitrogen. Bioresour. Technol. 230, 132–139 (2017). https://doi.org/10.1016/j.biortech.2017.01.032

    Article  Google Scholar 

  40. Mata-Alvarez, J.: Biomethanization of the Organic Fraction of Municipal Solid Wastes, pp. 1–338. IWA Publishing, London (2003)

    Google Scholar 

  41. Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O.: Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 150, 51–56 (2010). https://doi.org/10.1016/j.jbiotec.2010.07.030

    Article  Google Scholar 

  42. Passos, F., Ferrer, I.: Microalgae conversion to biogas: Thermal pretreatment contribution on net energy production. Environ. Sci. Technol. 48, 7171–7178 (2014). https://doi.org/10.1021/es500982v

    Article  Google Scholar 

  43. Solé-Bundó, M., Passos, F., Romero-Güiza, M.S., Ferrer, I., Astals, S.: Co-digestion strategies to enhance microalgae anaerobic digestion: a review. Renew. Sustain. Energy Rev. 112, 471–482 (2019). https://doi.org/10.1016/j.rser.2019.05.036

    Article  Google Scholar 

  44. Atasoy, M., Owusu-Agyeman, I., Plaza, E., Cetecioglu, Z.: Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour. Technol. 268, 773–786 (2018). https://doi.org/10.1016/j.biortech.2018.07.042

    Article  Google Scholar 

  45. Xia, A., Jacob, A., Tabassum, M.R., Herrmann, C., Murphy, J.D.: Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. Bioresour. Technol. 205, 118–125 (2016). https://doi.org/10.1016/j.biortech.2016.01.025

    Article  Google Scholar 

  46. Magdalena, J.A., Greses, S., González-Fernández, C.: Impact of organic loading rate in volatile fatty acids production and population dynamics using microalgae biomass as substrate. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-54914-4

    Article  Google Scholar 

  47. Moretto, G., Valentino, F., Pavan, P., Majone, M., Bolzonella, D.: Optimization of urban waste fermentation for volatile fatty acids production. Waste Manag. 92, 21–29 (2019). https://doi.org/10.1016/j.wasman.2019.05.010

    Article  Google Scholar 

  48. Li, Z., Chen, Z., Ye, H., Wang, Y., Luo, W., Chang, J.S., Li, Q., He, N.: Anaerobic co-digestion of sewage sludge and food waste for hydrogen and VFA production with microbial community analysis. Waste Manag. 78, 789–799 (2018). https://doi.org/10.1016/j.wasman.2018.06.046

    Article  Google Scholar 

  49. Dahiya, S., Sarkar, O., Swamy, Y.V., Venkata Mohan, S.: Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 182, 103–113 (2015). https://doi.org/10.1016/j.biortech.2015.01.007

    Article  Google Scholar 

  50. Sun, C., Xia, A., Liao, Q., Fu, Q., Huang, Y., Zhu, X., Wei, P., Lin, R., Murphy, J.D.: Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: effects of physicochemical characteristics and mix ratios. Appl. Energy. 230, 1082–1092 (2018). https://doi.org/10.1016/j.apenergy.2018.09.066

    Article  Google Scholar 

  51. Elbeshbishy, E., Dhar, B.R., Nakhla, G., Lee, H.S.: A critical review on inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 79, 656–668 (2017). https://doi.org/10.1016/j.rser.2017.05.075

    Article  Google Scholar 

  52. Zhou, M., Yan, B., Wong, J.W.C., Zhang, Y.: Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 248, 68–78 (2018). https://doi.org/10.1016/j.biortech.2017.06.121

    Article  Google Scholar 

  53. Feng, K., Li, H., Zheng, C.: Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour. Technol. 270, 180–188 (2018). https://doi.org/10.1016/j.biortech.2018.09.035

    Article  Google Scholar 

  54. Jiang, J., Zhang, Y., Li, K., Wang, Q., Gong, C., Li, M.: Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour. Technol. 143, 525–530 (2013). https://doi.org/10.1016/j.biortech.2013.06.025

    Article  Google Scholar 

  55. Dosta, J., Martin-Ryals, A., Garrigó, M., Ortiz-Roca, V., Fernández, I., Torres-Castillo, R., Mata-Álvarez, J.: Acidogenic fermentation and anaerobic co-digestion of mechanically sorted OFMSW and polyethylene glycol. Waste Biomass Valoriz. 9, 2319–2326 (2018). https://doi.org/10.1007/s12649-018-0294-x

    Article  Google Scholar 

  56. Luo, K., Pang, Y., Yang, Q., Wang, D., Li, X., Lei, M., Huang, Q.: A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications. Environ. Sci. Pollut. Res. (2019). https://doi.org/10.1007/s11356-019-04798-8

    Article  Google Scholar 

  57. Garcia-Aguirre, J., Esteban-Gutiérrez, M., Irizar, I., González-Mtnez de Goñi, J., Aymerich, E.: Continuous acidogenic fermentation: narrowing the gap between laboratory testing and industrial application. Bioresour. Technol. 282, 407–416 (2019). https://doi.org/10.1016/j.biortech.2019.03.034

    Article  Google Scholar 

  58. Zheng, M., Zheng, M., Wu, Y., Ma, H., Wang, K.: Effect of pH on types of acidogenic fermentation of fruit and vegetable wastes. Biotechnol. Bioprocess Eng. 20, 298–303 (2015). https://doi.org/10.1007/s12257-014-0651-y

    Article  Google Scholar 

  59. Zhu, H., Parker, W., Basnar, R., Proracki, A., Falletta, P., Béland, M., Seto, P.: Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. Int. J. Hydrogen Energy. 33, 3651–3659 (2008). https://doi.org/10.1016/j.ijhydene.2008.04.040

    Article  Google Scholar 

  60. Pellera, F.M., Gidarakos, E.: Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. J. Environ. Chem. Eng. 4, 3217–3229 (2016). https://doi.org/10.1016/j.jece.2016.05.026

    Article  Google Scholar 

  61. Iglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C.: Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresour. Technol. 291, 121817 (2019). https://doi.org/10.1016/j.biortech.2019.121817

    Article  Google Scholar 

  62. Eryildiz, B., Lukitawesa, L., Taherzadeh, M.J.: Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresour. Technol. 302, 122800 (2020). https://doi.org/10.1016/j.biortech.2020.122800

    Article  Google Scholar 

  63. Jayakrishnan, U., Deka, D., Das, G.: Enhancing the volatile fatty acid production from agro-industrial waste streams through sludge pretreatment. Environ. Sci. Water Res. Technol. 5, 334–345 (2019). https://doi.org/10.1039/c8ew00715b

    Article  Google Scholar 

  64. Lukitawesa, L., Patinvoh, R.J., Millati, R., Sárvári-Horváth, I., Taherzadeh, M.J.: Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered 11, 39–52 (2020). https://doi.org/10.1080/21655979.2019.1703544

    Article  Google Scholar 

  65. Yin, J., Liu, J., Chen, T., Long, Y., Shen, D.: Influence of melanoidins on acidogenic fermentation of food waste to produce volatility fatty acids. Bioresour. Technol. 284, 121–127 (2019). https://doi.org/10.1016/j.biortech.2019.03.078

    Article  Google Scholar 

  66. Wainaina, S., Lukitawesa, L., Awasthi, M.K., Taherzadeh, M.J.: Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered (2019). https://doi.org/10.1080/21655979.2019.1673937

    Article  Google Scholar 

  67. Bastidas-Oyanedel, J.R., Bonk, F., Thomsen, M.H., Schmidt, J.E.: Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev. Environ. Sci. Biotechnol. 14, 473–498 (2015). https://doi.org/10.1007/s11157-015-9369-3

    Article  Google Scholar 

  68. Lee, W.S., Chua, A.S.M., Yeoh, H.K., Ngoh, G.C.: A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 235, 83–99 (2014). https://doi.org/10.1016/j.cej.2013.09.002

    Article  Google Scholar 

Download references

Acknowledgements

Ceit would like to thank Gipuzkoa Provincial Council- Department of Environment and Hydraulic Works for its financial support and all the staff from the WWTP of San Sebastian. Furthermore, authors would like to thank Raul Muñoz, from the University of Valladolid, for kindly providing the microalgae biomass used in the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Garcia-Aguirre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerdán, J.M.A., Tejido-Nuñez, Y., Aymerich, E. et al. A Comprehensive Comparison of Methane and Bio-Based Volatile Fatty Acids Production from Urban and Agro-Industrial Sources. Waste Biomass Valor 12, 1357–1369 (2021). https://doi.org/10.1007/s12649-020-01093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01093-3

Keywords

Navigation