Skip to main content
Log in

Cultivation of Chlamydomonas reinhardtii in Anaerobically Digested Vinasse for Bioethanol Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study describes a new algal biofuel process that integrates sugarcane biorefinery wastewater treatment by nutrient removal with algae into bioethanol. The process is free of common industrial problems, including algal contamination, nutrients and fresh water usage, carbohydrate extraction, liquefaction, and saccharification. Cultivation and fermentation were conducted in one step by turning the light-air on and off, respectively. Three series of experiments with Chlamydomonas reinhardtii CC-1093 cultivation and fermentation were performed in anaerobically digested vinasse. Control experiments were a reference to compare the influence of chloride and ammonium-sulfate stress conditions on ethanol yield. Experimental results showed: (1) algal biomass can be successfully cultured within biorefinery wastewater (1129 mg·L−1·day−1); (2) relatively high bioremediation was achieved (26.1%–83.5%); (3) obtained ethanol yield was (maximum 68.3% of the theoretical yield) in one process step; and (4) the chloride stress condition influences on algae to synthesize extracellular polysaccharides as add-in product (120 mg/L).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Silkina, A., Zacharof, M.P., Ginnever, N.E., Gerardo, M., Lovitt, R.W.: Testing the waste based biorefinery concept: pilot scale cultivation of microalgal species on spent anaerobic digestate fluids. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-019-00766-y

    Article  Google Scholar 

  2. Longati, A.A., Lino, A.R.A., Giordano, R.C., Furlan, F.F., Cruz, A.J.G.: Biogas production from anaerobic digestion of vinasse in sugarcane biorefinery: a techno-economic and environmental analysis. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-019-00811-w

    Article  Google Scholar 

  3. Dias, M.O. de S., Maciel Filho, R., Mantelatto, P.E., Cavalett, O., Rossell, C.E.V., Bonomi, A., Leal, M.R.L.V.: Sugarcane processing for ethanol and sugar in Brazil. Environ. Dev. 15, 35–51 (2015). doi:10.1016/j.envdev.2015.03.004

  4. Cavalett, O., Junqueira, T.L., Dias, M.O.S., Jesus, C.D.F., Mantelatto, P.E., Cunha, M.P., Franco, H.C.J., Cardoso, T.F., Maciel Filho, R., Rossell, C.E.V., Bonomi, A.: Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technol. Environ. Policy. 14, 399–410 (2012). https://doi.org/10.1007/s10098-011-0424-7

    Article  Google Scholar 

  5. Souza, M.E., Fuzaro, G., Polegato, A.R.: Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Sci. Technol. 25, 213–222 (1992)

    Article  Google Scholar 

  6. Moraes, B.S., Junqueira, T.L., Pavanello, L.G., Cavalett, O., Mantelatto, P.E., Bonomi, A., Zaiat, M.: Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl. Energy. 113, 825–835 (2014). https://doi.org/10.1016/j.apenergy.2013.07.018

    Article  Google Scholar 

  7. Colling Klein, B., Bonomi, A., Maciel Filho, R.: Integration of microalgae production with industrial biofuel facilities: a critical review. Renew. Sustain. Energy Rev. 82, 1376–1392 (2018). https://doi.org/10.1016/J.RSER.2017.04.063

    Article  Google Scholar 

  8. Budiyono, I.S., Sumardiono, S., Sasongko, S.B.: Production of Spirulina platensis biomass using digested vinasse as cultivation medium. Trends Appl. Sci. Res. 9, 93–102 (2014). https://doi.org/10.3923/tasr.2014.93.102

    Article  Google Scholar 

  9. Candido, C., Lombardi, A.T.: Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. J. Appl. Phycol. 29, 45–53 (2017). https://doi.org/10.1007/s10811-016-0940-2

    Article  Google Scholar 

  10. Olguín, E.J., Dorantes, E., Castillo, O.S., Hernández-Landa, V.J.: Anaerobic digestates from vinasse promote growth and lipid enrichment in Neochloris oleoabundans cultures. J. Appl. Phycol. (2015). https://doi.org/10.1007/s10811-015-0540-6

    Article  Google Scholar 

  11. Srinivasan, R.: Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv. Mater. Sci. Eng. 2011, 1–17 (2011). https://doi.org/10.1155/2011/872531

    Article  Google Scholar 

  12. Molina-Sabio, M., González, J., Rodrı́guez-Reinoso, F.: Adsorption of NH3 and H2S on activated carbon and activated carbon–sepiolite pellets. Carbon N. Y. 42, 448–450 (2004). https://doi.org/10.1016/J.CARBON.2003.11.009

    Article  Google Scholar 

  13. de Souza Noel Simas Barbosa, L., Hytönen, E., Vainikka, P.: Carbon balance evaluation in sugarcane biorefineries in Brazil for carbon capture and utilisation purposes. In: Neo-Carbon 4th Researchers’ Seminar. pp. 1–24 (2015)

  14. Marques, S.S.I., Nascimento, I.A., de Almeida, P.F., Chinalia, F.A.: Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment. Appl. Biochem. Biotechnol. 171, 1933–1943 (2013). https://doi.org/10.1007/s12010-013-0481-y

    Article  Google Scholar 

  15. Yang, L., Tan, X., Li, D., Chu, H., Zhou, X., Zhang, Y., Yu, H.: Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresour. Technol. 181, 54–61 (2015). https://doi.org/10.1016/j.biortech.2015.01.043

    Article  Google Scholar 

  16. Tan, X.B., Zhao, X.C., Zhang, Y.L., Zhou, Y.Y., Yang, L.B., Zhang, W.W.: Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresour. Technol. 247, 784–793 (2018). https://doi.org/10.1016/J.BIORTECH.2017.09.152

    Article  Google Scholar 

  17. Moheimani, N.R., Cord-Ruwisch, R., Raes, E., Borowitzka, M.A.: Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J. Appl. Phycol. 25, 1653–1661 (2013). https://doi.org/10.1007/s10811-013-0012-9

    Article  Google Scholar 

  18. Hirano, A., Ueda, R., Hirayama, S., Ogushi, Y.: CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22, 137–142 (1997). https://doi.org/10.1016/S0360-5442(96)00123-5

    Article  Google Scholar 

  19. Hirayama, S., Ueda, R., Ogushi, Y., Hirano, A., Samejima, Y., Hon-Nami, K., Kunito, S.: Ethanol production from carbon dioxide by fermentative microalgae. Stud. Surf. Sci. Catal. 114, 657–660 (1998). https://doi.org/10.1016/S0167-2991(98)80845-8

    Article  Google Scholar 

  20. Kosourov, S., Seibert, M., Ghirardi, M.L.: Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol. 44, 146–155 (2003)

    Article  Google Scholar 

  21. Kreuzberg, K.: Starch fermentation via a formate producing pathway in Chlamydomonas reinhardii, Chlorogonium elongatum and Chlorella fusca. Physiol. Plant. 61, 87–94 (1984). https://doi.org/10.1111/j.1399-3054.1984.tb06105.x

    Article  Google Scholar 

  22. James, G.O., Hocart, C.H., Hillier, W., Chen, H., Kordbacheh, F., Price, G.D., Djordjevic, M.A.: Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 102, 3343–3351 (2011). https://doi.org/10.1016/J.BIORTECH.2010.11.051

    Article  Google Scholar 

  23. Khona, D.K., Shirolikar, S.M., Gawde, K.K., Hom, E., Deodhar, M.A., D’Souza, J.S.: Characterization of salt stress-induced palmelloids in the green alga Chlamydomonas reinhardtii. Algal Res. 16, 434–448 (2016). https://doi.org/10.1016/J.ALGAL.2016.03.035

    Article  Google Scholar 

  24. Nguyen, M.T., Choi, S.P., Lee, J., Lee, J.H., Sim, S.J.: Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19, 161–166 (2009)

    Article  Google Scholar 

  25. Choi, S.P., Nguyen, M.T., Sim, S.J.: Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101, 5330–5336 (2010). https://doi.org/10.1016/J.BIORTECH.2010.02.026

    Article  Google Scholar 

  26. Scholz, M.J., Riley, M.R., Cuello, J.L.: Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenerg. 48, 59–65 (2013). https://doi.org/10.1016/J.BIOMBIOE.2012.10.026

    Article  Google Scholar 

  27. Asada, C., Doi, K., Sasaki, C., Nakamura, Y.: Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation. Nat. Resour. 3, 175–179 (2012). https://doi.org/10.4236/nr.2012.34023

    Article  Google Scholar 

  28. Kadioǧlu, A., Algur, Ö.F.: Tests of media with vinasse for Chlamydomonas reinhardii for possible reduction in vinasse pollution. Bioresour. Technol. 42, 1–5 (1992). https://doi.org/10.1016/0960-8524(92)90080-H

    Article  Google Scholar 

  29. Williamson, K.L., Masters, K.M.: Macroscale and microscale organic experiments. Brooks/Cole (2011)

  30. Bunyakiat, T., Khuwijitjaru, P.: Decolorization of hydrolysate of coconut meal using activated carbon after subcritical water treatment. Food Appl. Biosci. J. 4, 151–160 (2016). https://doi.org/10.14456/FABJ.2016.14

    Article  Google Scholar 

  31. Lombardi, A.T., Salgueiro De Lima, M.I., Candido, C., Ferro Garzon, M.: Processo de tratamento de vinhaça, vinhaça tratada e uso da mesma, (2017)

  32. Home - Chlamydomonas Resource Center, https://www.chlamycollection.org/

  33. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  34. Moheimani, N.R., Borowitzka, M.A., Isdepsky, A., Sing, S.F.: Standard methods for measuring growth of algae and their composition. Algae for Biofuels and Energy, pp. 265–284. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  35. Haydel, S.E., Remenih, C.M., Williams, L.B.: Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J. Antimicrob. Chemother. 61, 353–361 (2007). https://doi.org/10.1093/jac/dkm468

    Article  Google Scholar 

  36. Williams, L.B., Metge, D.W., Eberl, D.D., Harvey, R.W., Turner, A.G., Prapaipong, P., Poret-Peterson, A.T.: What makes a natural clay antibacterial? Environ. Sci. Technol. 45, 3768–3773 (2011). https://doi.org/10.1021/es1040688

    Article  Google Scholar 

  37. Li, L., Quinlivan, P.A., Knappe, D.R.U.: Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties. Environ. Sci. Technol. (2005). https://doi.org/10.1021/ES048816D

    Article  Google Scholar 

  38. Galan, E.: Properties and applications of palygorskite-sepiolite clays. Clay Miner. 31, 443–453 (1996). https://doi.org/10.1180/claymin.1996.031.4.01

    Article  Google Scholar 

  39. Vejrazka, C., Janssen, M., Benvenuti, G., Streefland, M., Wijffels, R.H.: Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light. Appl. Microbiol. Biotechnol. 97, 1523–1532 (2013). https://doi.org/10.1007/s00253-012-4390-8

    Article  Google Scholar 

  40. Kim, M.S., Baek, J.S., Yun, Y.S., Jun Sim, S., Park, S., Kim, S.C.: Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int. J. Hydrog. Energy. 31, 812–816 (2006). https://doi.org/10.1016/J.IJHYDENE.2005.06.009

    Article  Google Scholar 

  41. Kong, Q., Li, L., Martinez, B., Chen, P., Ruan, R.: Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl. Biochem. Biotechnol. 160, 9–18 (2010). https://doi.org/10.1007/s12010-009-8670-4

    Article  Google Scholar 

  42. Serejo, M.L., Posadas, E., Boncz, M.A., Blanco, S., García-Encina, P., Muñoz, R.: Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ. Sci. Technol. 49, 3228–3236 (2015). https://doi.org/10.1021/es5056116

    Article  Google Scholar 

  43. Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylidès, C., Li-Beisson, Y., Peltier, G.: Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11, 7 (2011). https://doi.org/10.1186/1472-6750-11-7

    Article  Google Scholar 

  44. Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., Hu, Q.: Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 12, 387–391 (2010). https://doi.org/10.1016/J.YMBEN.2010.02.002

    Article  Google Scholar 

  45. Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., Goodenough, U.: Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell. 8, 1856–1868 (2009). https://doi.org/10.1128/EC.00272-09

    Article  Google Scholar 

  46. Crayton, M.A.: A comparative cytochemical study of volvocacean matrix polysaccharides. J. Phycol. 18, 336–344 (1982). https://doi.org/10.1111/j.1529-8817.1982.tb03193.x

    Article  Google Scholar 

  47. Ueno, Y., Kurano, N., Miyachi, S.: Ethanol production by dark fermentation in the marine green alga Chlorococcum littorale. J. Ferment. Bioeng. 86, 38–43 (1998). https://doi.org/10.1016/S0922-338X(98)80031-7

    Article  Google Scholar 

  48. Wang, W.: Cassava production for industrial utilization in China – present and future perspective. In: Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop. pp. 33–38. Seventh Regional Cassava Workshop, October 28–November 1, Bangkok, Thailand (2002)

  49. Moreira, J.R., Goldemberg, J.: The alcohol program. Energy Policy 27, 229–245 (1999). https://doi.org/10.1016/S0301-4215(99)00005-1

    Article  Google Scholar 

  50. Berg, C.: World Fuel Ethanol—Analysis and Outlook. Kent, England (2004)

    Book  Google Scholar 

  51. Kadam, K.L., McMillan, J.D.: Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 88, 17–25 (2003). https://doi.org/10.1016/S0960-8524(02)00269-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP (grant numbers 17/14056-9 and 15/20630-4). Authors are also thankful for the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project III 45001); Prof. Dr. Telma Teixeira Franco (LEBBPOR, FEQ, UNICAMP, São Paulo, Brazil), who permitted the use of TOC-VCSN Analyzer (Shimadzu, Kyoto, Japan); Prof. Dr. Ljubica Tasic and Dr. Danijela Stanisic (Institute of Chemistry, UNICAMP, São Paulo, Brazil), who kindly provided rotary shaker. Special acknowledgments belong to the following individuals from LOPCA (FEQ, UNICAMP, São Paulo, Brazil), who provided the technical and logistics support during the research: Luisa Fernanda Rios Pinto, Gabriela Filipini Ferreira, Jean Felipe Leal Silva and Renato Sano Coelho.

Author information

Authors and Affiliations

Authors

Contributions

MBT performed the fermentations, acquisition, analysis, and interpretation of data, design conception and drafting of the article. AJB was involved in the acquisition, analysis, and interpretation of GC data. MIRBS was involved in the acquisition and interpretation of absorbents data. BCK was involved in the acquisition, analysis, and interpretation of ADV data. VBV participated in design conception and drafting of the article. RMF participated in the design of this study as well as coordination and supervision of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marija B. Tasic.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasic, M.B., Bonon, A., Rocha Barbosa Schiavon, M. et al. Cultivation of Chlamydomonas reinhardtii in Anaerobically Digested Vinasse for Bioethanol Production. Waste Biomass Valor 12, 857–865 (2021). https://doi.org/10.1007/s12649-020-01034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01034-0

Keywords

Navigation