Skip to main content
Log in

Metalloporphyrin as a Biomimetic Catalyst for the Catalytic Oxidative Degradation of Lignin to Produce Aromatic Monomers

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignin, an abundant biomass waste, was degraded under microwave irradiation with H2O2 as the oxidant and metalloporphyrin as the catalyst. The effect of substituent group (4-methylphenyl, 4-methoxyphenyl, 4-bromophenyl and 4-carboxyphenyl) at the meso-benzene ring of metalloporphyrin, central metal ion (Co, Mn, Ni and Fe) and axial ligand (chlorine, p-hydroxypyridine, p-pyridinecarboxaldehyde) on the degradation of lignin was investigated. The electron-withdrawing group not only reduces the electron cloud density on the porphyrin ring, but also promotes the formation of higher active intermediate [(Porp)MeIV=O]. Therefore, the presence of stronger electron-withdrawing substituents makes the metalloporphyrins more efficient in lignin degradation. Compared to Co porphyrin, there are less amount of [(Porp)MeIV=O]+· formed when Mn, Fe or Ni porphyrin was used as the catalyst for degrading lignin. Consequently, Co porphyrin contributed to a higher YAM (the yield of aromatic monomers). The strong nucleophilicity and the low steric hinderance of axial ligand was advantageous for the stability of metalloporphyrins, which is favorable for improving the catalytic activity to the degradation of lignin. It is found that the YAM increases 20.1% from 5.6% by using CoTBrPPCl as the reaction catalyst under the optimized conditions

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M.: Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012)

    Article  Google Scholar 

  2. Huang, Q.L., Lin, X.Q., Lian, X., Huang, C., Zhang, H.R., Luo, M.T., Tian, L.L., Chen, X.D.: Kinetic and thermodynamic studies of acid soluble lignin adsorption from rice straw hydrolysate by a self-synthesized macro/mesoporous resin. RSC Adv. 7, 23896–23906 (2017)

    Article  Google Scholar 

  3. Kunkes, E.L., Simonetti, D.A., West, R.M., Serranoruiz, J.C., Gärtner, C.A., Dumesic, J.A.: Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322, 417–421 (2008)

    Article  Google Scholar 

  4. Li, N., Li, Y.D., Chang, G.Y., Yang, X.H., Lin, X.L., Ralph, J., Pan, X.J.: An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: a mechanistic study. Green Chem. 20, 4224–4235 (2018)

    Article  Google Scholar 

  5. Matson, T.D., Barta, K., Iretskii, A.V., Ford, P.C.: One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels. J. Am. Chem. Soc. 133, 14090–14097 (2011)

    Article  Google Scholar 

  6. Kubo, S., Kadla, J.F.: Hydrogen bonding in lignin: a fourier transform infrared model compound study. Biomacromology 6, 2815–2821 (2005)

    Article  Google Scholar 

  7. Guo, H.W., Zhang, B., Qi, Z.J., Li, C.Z., Ji, J.W., Dai, T., Wang, A.Q., Zhang, T.: Valorization of lignin to simple phenolic compounds over tungsten carbide: impact of lignin structure. Chemsuschem 10, 523–532 (2017)

    Article  Google Scholar 

  8. Rahimi, A., Ulbrich, A., Coon, J.J., Stahl, S.S.: Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014)

    Article  Google Scholar 

  9. Feghali, E., Carrot, G., Thuery, P., Genre, C., Cantat, T.: Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy Environ. Sci. 8, 2734–2743 (2015)

    Article  Google Scholar 

  10. Ouyang, X.P., Ruan, T., Qiu, X.Q.: Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds. Fuel Process. Technol. 144, 181–185 (2016)

    Article  Google Scholar 

  11. Liang, S., Wan, C.: Biorefinery lignin to renewable chemicals via sequential fractionation and depolymerization. Waste Biomass Valor. 12, 1–8 (2016)

    Google Scholar 

  12. Wang, S.R., Dai, G.X., Yang, H.P., Luo, Z.Y.: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog. Energy Combust. Sci. 62, 33–86 (2017)

    Article  Google Scholar 

  13. Suriapparao, D.V., Vinu, R.: Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste Biomass Valor. 9, 465–477 (2017)

    Article  Google Scholar 

  14. Zhu, Y.T., Liu, J., Liao, Y.H., Ma, L.L., Wang, C.G.: Degradation of vanillin during lignin valorization under alkaline oxidation. Top. Curr. Chem. 376, 1–19 (2018)

    Article  Google Scholar 

  15. Ansaloni, S., Russo, N., Pirone, R.: Wet air oxidation of industrial lignin case study: influence of the dissolution pretreatment and perovskite-type oxides. Waste Biomass Valor. 9, 2165–2179 (2018)

    Article  Google Scholar 

  16. Zhu, Y., Ouyang, X.P., Zhao, Y., Jiang, L.F., Guo, H.J., Qiu, X.Q.: Oxidative depolymerization of lignin improved by enzymolysis pretreatment with laccase. J. Energy Chem. 27, 801–805 (2017)

    Article  Google Scholar 

  17. Chen, H.Y., Liu, J.B., Chang, X., Chen, D.M., Xue, Y., Liu, P., Lin, H.L., Han, S.: A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196–206 (2017)

    Article  Google Scholar 

  18. Partenheimer, W.: The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv. Synth. Catal. 351, 456–466 (2009)

    Article  Google Scholar 

  19. Zeng, J.J., Yoo, C.G., Wang, F., Pan, X.J., Vermerris, W., Tong, Z.H.: Biomimetic fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids. Chemsuschem 8, 861–871 (2015)

    Article  Google Scholar 

  20. Schutyser, W., Renders, T., Van, D.B.S., Koelewijn, S.F., Beckham, G.T., Sels, B.F.: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018)

    Article  Google Scholar 

  21. Andersson, L.A., Renganathan, V., Loehr, T.M., Gold, M.H.: Lignin peroxidase: resonance Raman spectral evidence for compound II and for a temperature-dependent coordination-state equilibrium in the ferric enzyme. Biochemistry 26, 2258–2263 (1987)

    Article  Google Scholar 

  22. Shimada, M., Habe, T., Umezawa, T., Higuchi, T., Okamoto, T.: The C–C bond cleavage of a lignin model compound, 1,2-diarylpropane-1,3-diol, with a heme-enzyme model catalyst tetraphenylporphyrinatoiron (III) chloride in the presence of tert-butylhydroperoxide. Biochem. Biophys. Res. Commun. 122, 1247–1252 (1984)

    Article  Google Scholar 

  23. Li, Y., Chang, J., Ouyang, Y.: Selective production of aromatic aldehydes from lignin by metalloporphyrins/H2O2 system. Adv. Mater. Res. 805–806, 273–276 (2013)

    Google Scholar 

  24. Walsh, K., Sneddon, H.F., Moody, C.J.: Solar photochemical oxidations of benzylic and allylic alcohols using catalytic organo-oxidation with DDQ: application to lignin models. Org. Lett. 16, 5224–5227 (2014)

    Article  Google Scholar 

  25. Adler, A.D., Longo, F.R., Finarelli, J.D., Goldmacher, J., Assour, J., Korsakoff, L.: A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem. 32, 476 (1967)

    Article  Google Scholar 

  26. Tsutsumi, O., Sato, H., Takeda, K., Ogawa, T.: Synthesis and photochemical behavior of metalloporphyrin complexes containing a photochromic axidal ligand. Thin Solid Film. 499, 219–223 (2006)

    Article  Google Scholar 

  27. Zhu, G.D., Qiu, X.Q., Zhao, Y., Qian, Y., Pang, Y.X., Ouyang, X.P.: Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols. Bioresour. Technol. 218, 718–722 (2016)

    Article  Google Scholar 

  28. Fujii, H.: Effects of the electron-withdrawing power of substituents on the electronic structure and reactivity in oxo-iron(IV) porphyrin. Pi-cation radical complexes. J. Am. Chem. Soc. 115, 4641–4648 (1993)

    Article  Google Scholar 

  29. Nam, W.: New insights into the mechanisms of O–O bond cleavage of hydrogen peroxide and tert-alkyl hydroperoxides by iron(III)porphyrin complexes. J. Am. Chem. Soc. 122, 8677–8684 (2000)

    Article  Google Scholar 

  30. Fabbri, C., Aurisicchio, C., Lanzalunga, O.: Iron porphyrins-catalysed oxidation of α-alkyl substituted mono and dimethoxylated benzyl alcohols. Cent. Eur. J. Chem. 6, 145–153 (2008)

    Google Scholar 

  31. George, A., Tran, K., Morgan, T.J., Benke, P.I., Berrueco, C., Lorente, E., Wu, B.C., Keasling, J.D., Simmons, B.A., Holmes, B.M.: The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem. 13, 3375–3385 (2011)

    Article  Google Scholar 

  32. Sun, C., Hu, B., Liu, Z.: Efficient and ecofriendly options for the chemoselective oxidation of alkenes using manganese porphyrin and dioxygen. Chem. Eng. J. 232, 96–103 (2013)

    Article  Google Scholar 

  33. Schiavon, M.A., Iamamoto, Y., Nascimento, O.R., Assis, M.D.D.: Catalytic activity of nitro- and carboxy-substituted iron porphyrins in hydrocarbon oxidation: homogeneous solution and supported systems. J. Mol. Catal. A 174, 213–222 (2001)

    Article  Google Scholar 

  34. Yuan, Z., Cheng, S., Leitch, M., Xu, C.C.: Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresour. Technol. 101, 9308–9313 (2010)

    Article  Google Scholar 

  35. Zucca, P., Rescigno, A., Rinaldi, A.C., Sanjust, E.: Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: molecular mechanisms and application perspectives. J. Mol. Catal. A 388–389, 2–34 (2014)

    Article  Google Scholar 

  36. Hou, J.M., Gao, X.X.: Voltammetric study on nickel(II) complex of meso-tetra-(4-N-methylpyridyl)porphyrin in aqueous solution. Chem. J. Chin. Univ. 8, 1136–1139 (1994)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21576104, 21776108, 21690083) and Science and Technology Program of Guangdong, China (2017B090903003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinping Ouyang or Xueqing Qiu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Ma, G., Ouyang, X. et al. Metalloporphyrin as a Biomimetic Catalyst for the Catalytic Oxidative Degradation of Lignin to Produce Aromatic Monomers. Waste Biomass Valor 11, 4481–4489 (2020). https://doi.org/10.1007/s12649-019-00753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00753-3

Keywords

Navigation