Skip to main content
Log in

Valorisation of Edible Oil Wastewater Sludge: Bioethanol and Biodiesel Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study aimed to reuse primary wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for biodiesel production. Results showed that the fatty acid profile of the oilseed primary wastewater sludge was favourable for biodiesel production; with a maximum 45% (w/w) monounsaturated fats extracted using ethanol at an ethanol to solid ratio of 25:1. The residue after the extraction of fats from the sludge contained sufficient fermentable sugars for bioethanol production. A maximum theoretical yield of bioethanol of 106% was obtained after enzymatic hydrolysis followed by fermentation using the industrial Saccharomyces cerevisiae strain MH-1000 at an optimum density of 2 × 105 CFU/mL. A novel nano-magnetic catalyst synthesised from cupriferous mineral processing wastes was employed. A maximum biodiesel yield of 94% was obtained at an oil to ethanol ratio of 1:9, catalyst loading of 5 wt.%, and reaction time of 180 min at 75 °C. The approach employed in this study has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impacts of conventional biodiesel production on food and land security, while simultaneously reducing waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olkiewicz, M.. Fortuny, A., Stuber, F., Fabregat, A., Font, J., Bengoa Ch.: Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia Eng. 42, 634–643 (2012)

    Article  Google Scholar 

  2. Kumar, D., Singh, V.: Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production. Biotechnol. Biofuels 9, 228 (2016)

    Article  Google Scholar 

  3. Department of Water Affairs (DWA). Minimum requirements for handling, classification and disposal of hazardous waste, Pretoria: (2017)

  4. Meher, L.C., Sagar, D.V., Naik, S.N.: Technical aspects of biodiesel production by transesterification—a review. Renew. Sust. Energy Rev. 10, 248–268 (2006)

    Article  Google Scholar 

  5. Demirbas, A., Bafail, A., Ahmad, W., Sheikh, M.: Biodiesel production from non-edible plant oils. Energy Explor. Exploit. 34, 290–318 (2016)

    Article  Google Scholar 

  6. Centi, G., Perathoner, S.: Catalysis by layered materials: A review. Microporous Mesoporous Mater. 107, 3 (2008)

    Article  Google Scholar 

  7. Xie, W., Yang, X., Fan, M.: Novel solid base catalyst for biodiesel production: mesoporous SBA-15 silica immobilized with 1,3-dicyclohexyl-2-octylguanidine. Renew Energy 80, 230–237 (2015)

    Article  Google Scholar 

  8. McNeff, C.V., McNeff, L.C., Yan, B., Nowlan, D.T., Rasmussen, M., Gyberg, A.E., Khron, J., Fedie, R., Hoye, T.R.: A continuous catalytic system for biodiesel production. Applied Catal. A. 343, 39–42 (2008)

    Article  Google Scholar 

  9. Kouzu, M., Kajita, A., Fujimori, A.: Catalytic activity of calcined scallop shell for rapeseed oil transesterification to produce biodiesel. Fuel. 182, 220–226 (2016)

    Article  Google Scholar 

  10. Association of Official Analytical Chemists (AOAC). 2005. AOAC 996.06. Oils and Fat. 18th Edition

  11. Dufreche, S., Hernandez, R., French, T., Sparks, D., Zappi, M., Alley, E.: Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J. Am. Oil Chem. Soc. 84, 181–187 (2007)

    Article  Google Scholar 

  12. Van Zyl, J.M., Van Rensburg, E., Van Zyl, W.H., Harms, T.M., Lynd, L.R.: A kinetic model for simultaneous saccharification and fermentation of Avicel with Saccharomyces cerevisiae. Biotechnol Bioeng. 108(4), 924–933 (2011)

    Article  Google Scholar 

  13. Welz, P.J., Ramond, J.-B., Cowan, D.A., Prins, A., Burton, S.G.: Ethanol degradation and the benefits of incremental priming in pilot-scale constructed wetlands. Ecol. Eng. 37, 1453–1459 (2011)

    Article  Google Scholar 

  14. Sun, Y., Li, X., Zhang, W., Wang, H.: A Method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf. A 308, 60–66 (2007)

    Article  Google Scholar 

  15. Frisch, A., Pizarek, T.: Two methods for determining the moment of a magnet inside a Cue Ball. Wabash Journal of Physics, Crawfordsville: (2008)

    Google Scholar 

  16. Tinprabatha, P., Hespelb, C., Chanchaonac, S., Foucherb, F.: Impact of cold conditions on diesel injection processes of biodiesel blends. Renew. Energy. 96, 270–280 (2016)

    Article  Google Scholar 

  17. Herrera, V.A.C., Gómez-Rodríguez, J., Hayward-Jones, P.M., Dulce María Barradas-Dermitz, D.M., Aguilar-Uscanga, M.G.: In-situ monitoring of Saccharomyces cerevisiaeITV01 bioethanol process using near-infrared spectroscopy NIRS and chemometrics. Biotechnology Progress. 32, 510–517

  18. Robinson, J., Keating, J.D., Mansfield, S.D., Saddler, J.N.: The fermentability of concentrated softwood-derived hemicellulose fractions with and without supplemental cellulose hydrolysates. Enz. Microbial. Technol. 33, 757–765 (2003)

    Article  Google Scholar 

  19. Tan, K.T., Lee, K.: A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges. Renew. Sustain. Energy Rev. (5)15, 2452–2456 (2014)

    Google Scholar 

  20. Althuri, A.A., Sanjeev, K., Knawang, C.S., Banerjee, R.: Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. 431–444 (2016)

  21. Zabed, H., Faruq, G., Sahu, J.N.: Bioethanol production from fermentable sugar juice. Sci. World J. 1, 1–11 (2014)

    Article  Google Scholar 

  22. Boulbabac, L., Belgaib, J., Hedibenamor, N.H.: Production of bio-ethanol from three varieties of dates. Biofuels Future Bioecon.. 4(8) (2017)

  23. Liu, X., He, H., Wang, Y., Zhu, S.: Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal. Commun. 8, 1107–1111 (2007)

    Article  Google Scholar 

  24. Thomsen, M.H., Oleskowicz, P.P., Przemyslaw, L., Holm-Nielsen, J.B.: Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure. Biores. Technol. 99(13), 5327–5334 (2008)

    Article  Google Scholar 

  25. Laopaiboon, L., Thanonkeo, Jaisil, P., Laopaiboon, P.: Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 23, 1497–1501 (2007)

    Article  Google Scholar 

  26. Jamil, F., Al-Muhtaseb, A.H., Al-Haj, L., Al-Hinai, M.A., Hellier, P., Rashid, U.: Optimization of oil extractiom waste “Date pits” for biodiesel production. Energ. Convers. Manag. 117, 264–272 (2016)

    Article  Google Scholar 

  27. Teo, S.H., Rashid, U., Taufiq-Yap, Y.H.: Biodiesel production from crude Jatropha Curcas oil using calcium based mixed oxide catalysts. Fuel. 136, 244–252 (2014)

    Article  Google Scholar 

  28. Taufiq-Yap, Y.H., Lee, H.V.: Higher grade biodiesel production by using solid heterogeneous catalysts. In:Pogaku, R., Sarbatly, R.H.. Springer: US, pp. 153–176 (2013)

    Google Scholar 

  29. Taufiq-Yap, Y.H., Teo, S.H., Rashid, U., Islam, A., Hussien, M.Z., Lee, K.T.: Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: effect of stoichiometric composition. Energy Convers Manage 88, 1290–1296 (2014)

    Article  Google Scholar 

  30. Chen, S.Y., Mochizuki, T., Abe, Y., Toba, M., Yoshimura, Y.: Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels. Appl. Catal. B. Environ. 148–149, 344–356 (2014)

    Article  Google Scholar 

  31. Wang, L., Dong, X., Jiang, H., Li, G., Zhang, M.: Ordered mesoporous carbon supported ferric sulfate: a novel catalyst for the esterification of free fatty acids in waste cooking oil. Fuel Process Technol. 128, 10–16 (2014)

    Article  Google Scholar 

  32. Berchmans, H.J., Morishita, K., Takarada, T.: Kinetic study of hydroxide-catalyzed methanolysis of Jatropha curcas–waste food oil mixture for biodiesel production. Fuel. 104, 46–52 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their sincere appreciation to the Water Research Commission of South Africa (WRC-Project K5/2404) and the Council for Scientific and Industrial Research (CSIR/HCD-IBS programme) for funding this project, and the Cape Peninsula University of Technology for the opportunity. The content does not necessarily reflect the views and policies of the funding organisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Welz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoie, W.I., Oyekola, O.O., Ikhu-Omoregbe, D. et al. Valorisation of Edible Oil Wastewater Sludge: Bioethanol and Biodiesel Production. Waste Biomass Valor 11, 2431–2440 (2020). https://doi.org/10.1007/s12649-019-00633-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00633-w

Keywords

Navigation