Skip to main content
Log in

Effect of Anaerobic Digestion Temperature on Sludge Quality

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Sludge quality in terms of dewaterability, reject water characteristics as well as foaming phenomena is a concern either economically or environmentally. In this work the difference in sludge quality between mesophilic and thermophilic anaerobic digested waste activated sludge is compared using completely stirred tank reactors. For mesophilic sludge, the mean capillary suction time (CST) in seconds, extent of dewaterability (% water removed), ammonia nitrogen (Nammon in mg/l) and the soluble COD (CODsol in mg/l) are 852 ± 180, 62.9 ± 1.7, 1484 ± 153.5, and 2315.7 ± 407.6 respectively. Meanwhile the foaming potential (FP) and foam stability (IS) are 4.4 ± 1.7 and 0.7 ± 0.1. Whereas, the mean CST, extent of dewaterability, Nammon and CODsol are 1109 ± 211, 65 ± 1.8, 1581 ± 120.5, and 4740.6 ± 1122.8 for the thermophilic sludge respectively. With a maximum organic loading rate achieved at 2.82 g-VS/l/d, the CST, Nammon and CODsol concentration as well as the FP are significantly better as sludge quality for the mesophilic sludge.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiang, J., Wu, J., Poncin, S., Li, H.Z.: Rheological characteristics of highly concentrated anaerobic digested sludge. Biochem. Eng. J. 86(0), 57–61 (2014)

    Article  Google Scholar 

  2. Appels, L., Baeyens, J., Degrève, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34(6), 755–781 (2008)

    Article  Google Scholar 

  3. Lau, S.W., Chong, S.H., Ang, H.M., Sen, T.K., Chua, H.B.: Dewaterability of anaerobic digested sludge with cations and chitosan as dual conditioners. In: Pogaku, R., Bono, A., Chu, C. (eds.) Developments in Sustainable Chemical and Bioprocess Technology, pp. 11–17. Springer, Boston (2013)

    Chapter  Google Scholar 

  4. Nges, I.A., Liu, J.: Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renew. Energy 35(10), 2200–2206 (2010)

    Article  Google Scholar 

  5. Wang, F., Hidaka, T., Uchida, T., Tsumori, J.: Thermophilic anaerobic digestion of sewage sludge with high solids content. Water Sci. Technol. 69(9), 1949–1955 (2014)

    Article  Google Scholar 

  6. Wang, T., Chen, J., Shen, H., An, D.: Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability. Bioresour. Technol. 217, 265–270 (2016)

    Article  Google Scholar 

  7. An, D., Wang, T., Zhou, Q., Wang, C., Yang, Q., Xu, B., Zhang, Q.: Effects of total solids content on performance of sludge mesophilic anaerobic digestion and dewaterability of digested sludge. Waste Manag. 62, 188–193 (2017)

    Article  Google Scholar 

  8. Verstraete, W., Vlaeminck, S.E.: ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future. Int. J. Sustain. Dev. World Ecol. 18(3), 253–264 (2011)

    Article  Google Scholar 

  9. Usack, J.G., Spirito, C.M., Angenent, L.T.: Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation. J. Vis. Exp. 65, 3978 (2012)

    Google Scholar 

  10. APHA, WWA, WEF: Standard methods for the examination of water and wastewater. In: Clesceri LS, Greenberg AE, Eaton AD (eds.) Solids, p. 7. Amer Public Health Assn (1999)

  11. USEPA: The Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry. In: O’Dell JW (ed.) p. 12. Cincinnati, Ohio (1993)

  12. American Public Health Association: A standard methods for the examination of water and wastewater. In: Capillary Suction Time. APHA (1999)

  13. Vesilind, P.A.: Capillary suction time as a fundamental measure of sludge dewaterability. J. (Water Pollut. Control Fed.) 60(2), 215–220 (1988)

    Google Scholar 

  14. Scholz, M.: Review of recent trends in capillary suction time (CST) dewaterability testing research. Ind. Eng. Chem. Res. 44(22), 8157–8163 (2005)

    Article  Google Scholar 

  15. Peeters, B.: Effect of Activated Sludge Composition on its Dewaterability and Sticky Phase, p. 280. Chemical Engineering, Katholieke Universiteit Leuven, Leuven (2011)

    Google Scholar 

  16. Sawalha, O., Scholz, M.: Impact of temperature on sludge dewatering properties assessed by the capillary suction time. Ind. Eng. Chem. Res. 51(6), 2782–2788 (2012)

    Article  Google Scholar 

  17. Fitria, D., Scholz, M., Swift, G.M., Hutchinson, S.M.: Impact of sludge floc size and water composition on dewaterability. Chem. Eng. Technol. 37(3), 471–477 (2014)

    Article  Google Scholar 

  18. Braguglia, C.M., Mininni, G., Rolle, E.: Influence of anaerobic digestion on particle surface charge and optimal polymer dosage. Water Sci. Technol. 54(5), 43–50 (2006)

    Article  Google Scholar 

  19. Zhou, J., Zheng, G., Zhang, X., Zhou, L.: Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching. PLoS ONE 9(7), e102688 (2014)

    Article  Google Scholar 

  20. Braguglia, C.M., Gianico, A., Gallipoli, A., Mininni, G.: The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: role of the organic load. Chem. Eng. J. 270, 362–371 (2015)

    Article  Google Scholar 

  21. Chi, Y.Z., Li, Y.Y., Ji, M., Qiang, H., Deng, H.W., Wu, Y.P.: Mesophilic and thermophilic digestion of thickened waste activated sludge: a comparative study. In: Sun, X.B., Du, Z. (eds.) Advanced Materials Research. Trans Tech Publications, Stafa-Zurich (2010)

    Google Scholar 

  22. Amani, T., Nosrati, M., Sreekrishnan, T.: A precise experimental study on key dissimilarities between mesophilic and thermophilic anaerobic digestion of waste activated sludge. Int. J. Environ. Res. 5(2), 333–342 (2011)

    Google Scholar 

  23. Zeng, J., Gao, J.-M., Chen, Y.-P., Yan, P., Dong, Y., Shen, Y., Guo, J.-S., Zeng, N., Zhang, P.: Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants. Sci. Rep. 6, 26721–26721 (2016)

    Article  Google Scholar 

  24. Decho, A.W., Gutierrez, T.: Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 922–922 (2017)

    Article  Google Scholar 

  25. Pontoni, L., Papirio, S., D’Alessandro, G., Caniani, D., Gori, R., Mannina, G., Capodici, M., Nicosia, S., Fabbricino, M., Pirozzi, F., Esposito, G.: Dewaterability of CAS and MBR sludge: effect of biological stability and EPS composition. J. Environ. Eng. 144(1):040170881–040170889 (2018)

    Article  Google Scholar 

  26. Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 55(0), 260–265 (2013)

    Article  Google Scholar 

  27. Gebauer, R.: Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production. Bioresour. Technol. 93(2), 155–167 (2004)

    Article  Google Scholar 

  28. Zanetti, L., Frison, N., Nota, E., Tomizioli, M., Bolzonella, D., Fatone, F.: Progress in real-time control applied to biological nitrogen removal from wastewater: a short-review. Desalination 286, 1–7 (2012)

    Article  Google Scholar 

  29. Zhang, L., Zheng, P., Tang, C., Jin, R.: Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters. J. Zhejiang Univ. Sci. B 9(5), 416–426 (2008)

    Article  Google Scholar 

  30. Abbasi, M., Dehghani, M., Moussavi, G., Azhdarpoor, A.: Degradation of organic matter of municipal sewage sludge using ultrasound treatment in Shiraz wastewater treatment plant. Health Scope 4(1), e23507 (2015)

    Article  Google Scholar 

  31. Baudez, J.C., Markis, F., Eshtiaghi, N., Slatter, P.: The rheological behaviour of anaerobic digested sludge. Water Res. 45(17), 5675–5680 (2011)

    Article  Google Scholar 

  32. Ge, H., Jensen, P.D., Batstone, D.J.: Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res. 45(4), 1597–1606 (2011)

    Article  Google Scholar 

  33. EEC: Urban Wastewater Treatment Directive. In: 91/271/EEC, EEC, Editor (1991)

  34. Kougias, P.G., Boe, K., S, O.T., Kristensen, L.A., Angelidaki, I.: Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions. Water Sci. Technol. 69(4), 889–895 (2014)

    Article  Google Scholar 

  35. Ganidi, N., Tyrrel, S., Cartmell, E.: Anaerobic digestion foaming causes—a review. Bioresour. Technol. 100(23), 5546–5554 (2009)

    Article  Google Scholar 

  36. Junker, B.: Foam and its mitigation in fermentation systems. Biotechnol. Prog. 23(4), 767–784 (2008)

    Article  Google Scholar 

  37. Fryer, M., O’Flaherty, E., Gray, N.F.: Evaluating the measurement of activated sludge foam potential. Water 3(1), 424 (2011)

    Article  Google Scholar 

  38. Suhartini, S., Heaven, S., Banks, C.J.: Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control. Bioresour. Technol. 152(0), 202–211 (2014)

    Article  Google Scholar 

  39. Kougias, P.G., Boe, K., Tsapekos, P., Angelidaki, I.: Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresour. Technol. 153, 198–205 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank my family and friends as well as those others who contributed directly or indirectly to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Getachew Dagnew Gebreeyessus.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebreeyessus, G.D. Effect of Anaerobic Digestion Temperature on Sludge Quality. Waste Biomass Valor 11, 1851–1861 (2020). https://doi.org/10.1007/s12649-018-0539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0539-8

Keywords

Navigation