Skip to main content

Advertisement

Log in

Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two-phasic anaerobic digestion processes (hydrolysis/acidogenesis separated from acetogenesis/methanogenesis) can be used for biogas production on demand or a combined chemicals/bioenergy production. For an effective process control, detailed knowledge about the microbial catalysts and their correlation to process conditions is crucial. In this study, maize silage was digested in a two-phase process and interrelationships between process parameters and microbial communities were revealed. In the first-phase reactor, alternating metabolic periods were observed which emerged independently from the feeding frequency. During the L-period, up to 11.8 g L-1 lactic acid was produced which significantly correlated to lactic acid bacteria of the genus Lactobacillus as the most abundant community members. During the alternating G-period, the production of volatile fatty acids (up to 5.3, 4.0 and 3.1 g L−1 for propionic, n-butyric and n-caproic acid, respectively) dominated accompanied by a high gas production containing up to 28 % hydrogen. The relative abundance of various Clostridiales increased during this metabolic period. In the second-phase reactor, the metabolic fluctuations of the first phase were smoothed out resulting in a stable biogas production as well as stable bacterial and methanogenic communities. However, the biogas composition followed the metabolic dynamics of the first phase: the hydrogen content increased during the L-period whereas highest CH4/CO2 ratios (up to 2.8) were reached during the G-period. Aceticlastic Methanosaeta as well as hydrogenotrophic Methanoculleus and Methanobacteriaceae were identified as dominant methanogens. Consequently, a directed control of the first-phase stabilizing desired metabolic states can lead to an enhanced productivity regarding chemicals and bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–78. doi:10.1016/j.tibtech.2010.11.006

    Article  PubMed  CAS  Google Scholar 

  • Allison SD, Martiny JB (2008) Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105(Suppl 1):11512–11519. doi:10.1073/pnas.0801925105

    Article  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi:10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chanakya HN, Borgaonkar S, Meena G, Jagadish KS (1993) Solid-phase biogas production with garbage or water hyacinth. Bioresour Technol 46(3):227–231

    Article  CAS  Google Scholar 

  • Chang H, Kim N-J, Kang J, Jeong C (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioproc E 15(1):1–10. doi:10.1007/s12257-009-3070-8

    Article  CAS  Google Scholar 

  • Chojnacka A, Blaszczyk MK, Szczesny P, Nowak K, Suminska M, Tomczyk-Zak K, Zielenkiewicz U, Sikora A (2011) Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria. Bioresour Technol 102(21):10057–10064. doi:10.1016/j.biortech.2011.08.063

    Article  PubMed  CAS  Google Scholar 

  • Cirne DG, Lehtomaki A, Bjornsson L, Blackall LL (2007) Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J Appl Microbiol 103(3):516–527. doi:10.1111/j.1365-2672.2006.03270.x

    Article  PubMed  CAS  Google Scholar 

  • Cysneiros D, Banks CJ, Heaven S (2008) Anaerobic digestion of maize in coupled leach-bed and anaerobic filter reactors. Water Sci Technol 58(7):1505–1511. doi:10.2166/wst.2008.518

    Article  PubMed  CAS  Google Scholar 

  • Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biot 77(7):743–755. doi:10.1002/Jctb.630

    Article  CAS  Google Scholar 

  • Demirer GN, Chen S (2005) Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem 40(11):3542–3549. doi:10.1016/j.procbio.2005.03.062

    Article  CAS  Google Scholar 

  • Desvaux M (2006) Unravelling carbon metabolism in anaerobic cellulolytic bacteria. Biotechnol Prog 22(5):1229–1238. doi:10.1021/bp060016e

    Article  PubMed  CAS  Google Scholar 

  • Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agr Food Chem 54(3):597–606. doi:10.1021/jf051851z

    Article  CAS  Google Scholar 

  • Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG, Chain PS, Scholz MB, Lo C-C, Raymond J (2013) Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 4:1854. doi:10.1038/ncomms2884

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461

    Article  PubMed  CAS  Google Scholar 

  • Fennell DE, Gossett JM, Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31(3):918–926. doi:10.1021/Es960756r

    Article  CAS  Google Scholar 

  • Gies EA, Konwar KM, Beatty JT, Hallam SJ (2014) Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl Environ Microbiol 80(21):6807–6818. doi:10.1128/AEM.01774-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grootscholten TI, Steinbusch KJ, Hamelers HV, Buisman CJ (2013) Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresour Technol 135:440–445. doi:10.1016/j.biortech.2012.10.165

    Article  PubMed  CAS  Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrog Energ 27(11–12):1339–1347. doi:10.1016/S0360-3199(02)00090-3

    Article  CAS  Google Scholar 

  • Heckel M (2007) Einfluß von Siliermitteln auf Siliererfolg und Biogasproduktion verschiedener Energiepflanzen. University of Potsdam, Diploma thesis

    Google Scholar 

  • Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzym Microb Tech 26(2–4):87–107. doi:10.1016/S0141-0229(99)00155-6

    Article  CAS  Google Scholar 

  • Horiuchi J-I, Shimizu T, Tada K, Kanno T, Kobayashi M (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82(3):209–213. doi:10.1016/S0960-8524(01)00195-X

    Article  PubMed  CAS  Google Scholar 

  • Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84(6):619–626. doi:10.1002/bit.10785

    Article  PubMed  Google Scholar 

  • Jo JH, Jeon CO, Lee DS, Park JM (2007) Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. J Biotechnol 131(3):300–308. doi:10.1016/j.jbiotec.2007.07.492

    Article  PubMed  CAS  Google Scholar 

  • Kusch S, Oechsner H, Jungbluth T (2012) Effect of various leachate recirculation strategies on batch anaerobic digestion of solid substrates. IJEWM 9(1/2):69–88. doi:10.1504/IJEWM.2012.044161

    Article  CAS  Google Scholar 

  • Lee DJ, Show KY, Su A (2011) Dark fermentation on biohydrogen production: pure culture. Bioresour Technol 102(18):8393–8402. doi:10.1016/j.biortech.2011.03.041

    Article  PubMed  CAS  Google Scholar 

  • Lehtomäki A, Huttunen S, Lehtinen TM, Rintala JA (2008) Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour Technol 99(8):3267–3278. doi:10.1016/j.biortech.2007.04.072

    Article  PubMed  CAS  Google Scholar 

  • Lucas R, Kuchenbuch A, Fetzer I, Harms H, Kleinsteuber S (2015) Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol Ecol 91(3). doi:10.1093/femsec/fiv004

  • Lv W, Schanbacher FL, Yu Z (2010) Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes. Bioresour Technol 101(24):9409–9414. doi:10.1016/j.biortech.2010.07.100

    Article  PubMed  CAS  Google Scholar 

  • Lykidis A, Chen CL, Tringe SG, McHardy AC, Copeland A, Kyrpides NC, Hugenholtz P, Macarie H, Olmos A, Monroy O, Liu WT (2011) Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. ISME J 5(1):122–130. doi:10.1038/ismej.2010.125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mähnert P (2007) Kinetik der Biogasproduktion aus nachwachsenden Rohstoffen und Gülle. Humboldt University Berlin, Dissertation

    Google Scholar 

  • McCarty PL, Smith DP (1986) Anaerobic wastewater treatment. Environ Sci Technol 20(12):1200–1206. doi:10.1021/es00154a002

    Article  CAS  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618. doi:10.1038/ismej.2011.139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naumann C, Bassler R (2006) Handbuch der landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), vol Bd. III Die chemische Untersuchung von Futtermitteln, VDLUFA-Verlag, Darmstadt, Germany

    Google Scholar 

  • Nizami A-S, Korres NE, Murphy JD (2009) Review of the integrated process for the production of grass biomethane. Environ Sci Technol 43(22):8496–8508. doi:10.1021/es901533j

    Article  PubMed  CAS  Google Scholar 

  • Noike T, Ko I, Yokoyama S, Kohno Y, Li Y (2005) Continuous hydrogen production from organic waste. Water Sci Technol 52(1–2):145–151

    PubMed  CAS  Google Scholar 

  • Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energ 27(11–12):1367–1371. doi:10.1016/S0360-3199(02)00120-9

    Article  CAS  Google Scholar 

  • Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial. 2.0-6 edn

  • Parawira W, Murto M, Read JS, Mattiasson B (2004) Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J Chem Technol Biot 79(7):673–677. doi:10.1002/jctb.1012

    Article  CAS  Google Scholar 

  • Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Riviere D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Medigue C, Weissenbach J, Le Paslier D (2008) “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190(7):2572–2579. doi:10.1128/JB.01248-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pohland FG, Ghosh S (1971) Developments in anaerobic stabilization of organic wastes—the two-phase concept. Environ Lett 1(4):255–266. doi:10.1080/00139307109434990

    Article  PubMed  CAS  Google Scholar 

  • Popp D, Schrader S, Kleinsteuber S, Harms H, Sträuber H (2015) Biogas production from coumarin-rich plants—impact of coumarin on process parameters and microbial community. FEMS Microbiol Ecol 91(9). doi:10.1093/femsec/fiv103

  • R Development Core Team (2011) R: a language and environment for statistical computing. 0.97.551 edn. R Foundation for Statistical Computing, Vienna, Austria

  • Ramasamy EV, Abbasi SA (2000) High-solids anaerobic digestion for the recovery of energy from municipal solid waste (MSW). Environ Technol 21(3):345–349. doi:10.1080/09593332108618120

    Article  CAS  Google Scholar 

  • Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 105(6):2128–2133. doi:10.1073/pnas.0711093105

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikora A, Zielenkiewicz U, Błaszczyk M, Jurkowski M (2013) Lactic acid bacteria in hydrogen-producing consortia: on purpose or by coincidence? In: Kongo JM (ed) Lactic acid bacteria—R & D for food, health and livestock purposes. InTech. doi:10.5772/50364

  • Spirito CM, Richter H, Rabaey K, Stams AJ, Angenent LT (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27C:115–122. doi:10.1016/j.copbio.2014.01.003

    Article  CAS  Google Scholar 

  • Staley BF, Reyes FL D l, Barlaz MA (2011) Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol 77(7):2381–2391. doi:10.1128/aem.02349-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74(21):6663–6671. doi:10.1128/AEM.00553-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sträuber H, Bühligen F, Kleinsteuber S, Nikolausz M, Porsch K (2015) Improved anaerobic fermentation of wheat straw by alkaline pre-treatment and addition of alkali-tolerant microorganisms. Bioengineering 2(2):66–93. doi:10.3390/bioengineering2020066

    Article  Google Scholar 

  • Sträuber H, Schröder M, Kleinsteuber S (2012) Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process. Energ Sustain Soc 2(1):13. doi:10.1186/2192-0567-2-13

    Article  Google Scholar 

  • Wei T (2011) corrplot: visualization of a correlation matrix. http://CRAN.R-project.org/package=corrplot.

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi:10.1128/AEM.00062-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weimer PJ, Moen GN (2013) Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81. Appl Microbiol Biotechnol 97(9):4075–4081. doi:10.1007/s00253-012-4645-4

    Article  PubMed  CAS  Google Scholar 

  • Weißbach F, Strubelt C (2008) Die Korrektur des Trockensubstanzgehaltes von Maissilagen als Substrat für Biogasanlagen. Landtechnik 63(2):2–4

    Google Scholar 

  • Wong BT, Show KY, Su A, Wong RJ, Lee DJ (2008) Effect of volatile fatty acid composition on upflow anaerobic sludge blanket (UASB) performance. Energ Fuel 22(1):108–112. doi:10.1021/Ef700282r

    Article  CAS  Google Scholar 

  • Zielonka S, Lemmer A, Oechsner H, Jungbluth T (2010) Energy balance of a two-phase anaerobic digestion process for energy crops. Eng Life Sci 10(6):515–519. doi:10.1002/elsc.201000071

    Article  CAS  Google Scholar 

  • Ziganshin AM, Liebetrau J, Pröter J, Kleinsteuber S (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol 97(11):5161–5174. doi:10.1007/s00253-013-4867-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Initiative and Networking Fund of the Helmholtz Association. We would like to thank Ronny Kirbach and Peter Keil for operating the two-phase reactor system and analysis of process parameters. We thank our collaboration partners from the Department Biochemical Conversion of the Deutsches Biomasseforschungszentrum (DBFZ) for contributing to the analytical measurements. Furthermore, we thank Dorota Rzechonek and Anne Kuchenbuch for T-RFLP analyses of bacterial communities, Franziska Bühligen for T-RFLP analyses of the methanogenic community and Ute Lohse for technical assistance with 454 pyrosequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Sträuber.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sträuber, H., Lucas, R. & Kleinsteuber, S. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process. Appl Microbiol Biotechnol 100, 479–491 (2016). https://doi.org/10.1007/s00253-015-6996-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6996-0

Keywords

Navigation