Skip to main content

Advertisement

Log in

Bioconversion of Sugarcane Bagasse into Value-Added Products by Bioaugmentation of Endogenous Cellulolytic and Fermentative Communities

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The goals of this study were to describe a comprehensive taxonomic profile of bacterial communities endogenous from sugarcane bagasse (SCB) and from a thermophilic sludge formed mainly by Proteobacteria Actinobacteria and Firmicutes phylum and its potential as a bioaugmented inoculum for degradation of lignocellulosic biomass. Batch assays were performed using SCB as substrate at different condition: (RC) 2 g L−1 glucose, (R1i) 2 g L−1 unpretreated SCB, (R2i) 2 g L−1 hydrothermally pretreated SCB (at 210 °C for 15 min), (R3i) 2 g L−1 hydrothermally pretreated SCB (at 210 °C for 15 min) followed by alkaline delignification (NaOH—1 M), (R4i) 1 g L−1 unpretreated SCB plus 1 g L−1 hydrothermally pretreated SCB (at 210 °C for 15 min) followed by alkaline delignification. Hydrogen, methane and organic acids were the main metabolites produced during the fermentation. Maximum hydrogen (2.01 and 1.09 mol H2 mol−1 consumed soluble carbohydrates) were obtained in R1i and R2i, respectively. The highest organic acid (1051 mg L−1) and methane (0.92 mmo L−1) production were obtained in R4i.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MAPA, Ministério da Agricultura, PeA.: Sucroenergia, http://www.agricultura.gov.br/vegetal/culturas/cana-de-acucar, (2016)

  2. Cgee: Química verde no Brasil: 2010–2030. (2010)

  3. Cheng, J., Zhu, M.: A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresour. Technol. 144, 623–631 (2013)

    Article  Google Scholar 

  4. Sauer, M., Porro, D., Mattanovich, D., Branduardi, P.: Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26, 100–108 (2008)

    Article  Google Scholar 

  5. Chu, C., Ebie, Y., Xu, K., Li, Y., Inamori, Y.: Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste. Int. J. Hydrog. Energy 35, 8253–8261 (2010)

    Article  Google Scholar 

  6. Guo, X.M., Trably, E., Latrille, E., Carrere, H., Steyer, J.P.: Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int. J. Hydrog Energy 39, 7476–7485(2013)

    Google Scholar 

  7. Liu, Y., Xu, J., Zhang, Y., Yuan, Z., He, M., Liang, C., Zhuang, X., Xie, J.: Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy 90, 1199–1205 (2015)

    Article  Google Scholar 

  8. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review q. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  9. Ratti, R.P., Delforno, T.P., Sakamoto, I.K., Varesche, M.B.A.: Thermophilic hydrogen production from sugarcane bagasse pretreated by steam explosion and alkaline delignification. Int. J. Hydrog. Energy 40, 6296–6306 (2015)

    Article  Google Scholar 

  10. Bielen, A., Verhaart, M., van der Oost, J., Kengen, S.: Biohydrogen production by the thermophilic bacterium caldicellulosiruptor saccharolyticus: current status and perspectives. Life 3, 52–85 (2013)

    Article  Google Scholar 

  11. Maki, M., Leung, K.T., Qin, W.: The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass the prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass Page 2 sur 8. Int. J. Biol. Sci. 5, 1–8 (2013)

    Google Scholar 

  12. Marone, A., Massini, G., Patriarca, C., Signorini, A., Varrone, C., Izzo, G.: Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. Int. J. Hydrog. Energy 37, 5612–5622 (2012)

    Article  Google Scholar 

  13. Allen, S.G., Schulman, D., Lichwa, J., Antal, M.J., Laser, M., Lynd, L.R.: A comparison between hot liquid water and steam fractionation of corn fiber. Ind. Eng. Chem. Res. 40, 2934–2941 (2001)

    Article  Google Scholar 

  14. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010)

    Article  Google Scholar 

  15. Holliday, R., King, J., List, G.: Hydrolysis of vegetable oils in sub-and supercritical water. Ind. Eng. Chem. 36, 935 (1997)

    Google Scholar 

  16. King, J., Holliday, R., List, G.: Hydrolysis of soybean oil in a subcritical water flow reactor. Green Chem. 261–264 (1999)

  17. Sun, S., Cao, X., Sun, S., Xu, F., Song, X., Sun, R.-C., Jones, G.L.: Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnol. Biofuels. 7, 116 (2014)

    Google Scholar 

  18. Ewanick, S.M., Bura, R.: Hydrothermal pretreatment of lignocellulosic biomass. Biol. Prod. 142, 3(2010)

    Google Scholar 

  19. Kundu, K., Sharma, S., Sreekrishnan, T.R.: Effect of operating temperatures on the microbial community profiles in a high cell density hybrid anaerobic bioreactor. Bioresour. Technol. 118, 502–511 (2012)

    Article  Google Scholar 

  20. Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34, 799–811 (2009)

    Article  Google Scholar 

  21. Cheng, L., Dai, L., Li, X., Zhang, H., Lu, Y.: Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the shengli oil field. Appl. Environ. Microbiol. 77, 5212–5219 (2011)

    Article  Google Scholar 

  22. Regiane, B., Ratti, P., Kimiko, I.: Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum. Bioprocess Biosyst. Eng. 39, 1887–1897 (2016)

    Article  Google Scholar 

  23. Ratti, R.P., Botta, L.S., Sakamoto, I.K., Varesche, M.B.A.: Microbial diversity of hydrogen-producing bacteria in batch reactors fed with cellulose using leachate as inoculum. Int. J. Hydrog. Energy 38, 9707–9717 (2013)

    Article  Google Scholar 

  24. Soares, L.A., Braga, J.K., Motteran, F., Sakamoto, I.K., Silva, E.L., Varesche, M.B.A.: Design and optimization of hydrogen production from hydrothermally pretreated sugarcane bagasse using response surface methodology. Water Sci. Technol. 76, 95 (2017)

    Article  Google Scholar 

  25. Jacquet, N., Quiévy, N., Vanderghem, C., Janas, S., Blecker, C., Wathelet, B., Devaux, J., Paquot, M.: Influence of steam explosion on the thermal stability of cellulose fibres. Polym. Degrad. Stab. 96, 1582–1588 (2011)

    Article  Google Scholar 

  26. Atlas, R.M.: Handbook of Media for Environmental Microbiology, CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  27. Penteado, E.D., Lazaro, C.Z., Sakamoto, I.K., Zaiat, M.: Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int. J. Hydrog. Energy 38, 6137–6145 (2013)

    Article  Google Scholar 

  28. APHA.: Standard Methods for the Examination of Water and Wastewater. Am. Public Heal. Assoc. Am. Water Work. Assoc. Water Environ. Fed. (2005)

  29. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956)

    Article  Google Scholar 

  30. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)

    Google Scholar 

  31. Griffiths, R.I., Whiteley, A.S., Anthony, G., Donnell, O., Bailey, M.J.: Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 1–5 (2000)

    Article  Google Scholar 

  32. Kudo, Y., Nakajima, T., Miyaki, T., Oyaizu, H.: Methanogen flora of paddy soils in Japan. FEMS Microbiol. Ecol. 22, 39 (1997)

    Article  Google Scholar 

  33. Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W., Backhaus, H.: Sequence heterogeneities of genes encoding 16S rRNA in Paenibacillus polymyxy detected by temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 178, 5636–5643 (1996)

    Google Scholar 

  34. Muyzer, G., De Waal, E.C., Uitterlinden, A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993)

    Google Scholar 

  35. Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O.: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013)

    Article  Google Scholar 

  36. Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., Tiedje, J.M.: Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633 (2014)

    Article  Google Scholar 

  37. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R.: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010)

    Article  Google Scholar 

  38. Wirth, R., Kovács, E., Maróti, G., Bagi, Z., Rákhely, G., Kovács, K.L.: Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol. Biofuels 5, 41 (2012)

    Article  Google Scholar 

  39. Masai, E., Katayama, Y., Nishikawa, S., Fukuda, M.: Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds. J. Ind. Microbiol. Biotechnol. 23, 364–373 (1999)

    Article  Google Scholar 

  40. Brown, M.E., Walker, M.C., Nakashige, T.G., Iavarone, A.T., Chang, M.C.Y.: Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J. Am. Chem. Soc. 133, 18006–18009 (2011)

    Article  Google Scholar 

  41. Jing, D., Wang, J.: Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation. Biotechnol. Biofuels 5, 15 (2012)

    Article  Google Scholar 

  42. Franco-Cirigliano, M.N., Rezende, R.D.C., Gravina-Oliveira, M.P., Pereira, P.H.F., Do Nascimento, R.P., Bon, E.P.D.S., Macrae, A., Coelho, R.R.R.: Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. Biomed Res. Int. 2013, (2013)

  43. Brito-Cunha, C.C.D.Q., De Campos, I.T.N., De Faria, F.P., Bataus, L.A.M.: Screening and xylanase production by streptomyces sp. grown on lignocellulosic wastes. Appl. Biochem. Biotechnol. 170, 598–608 (2013)

    Article  Google Scholar 

  44. de Lima Brossi, M.J., Jimenez, D.J., Cortes-Tolalpa, L., van Elsas, J.D.: Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose. Degrad. Microb. Ecol. 71, 616 (2015)

    Article  Google Scholar 

  45. Mathews, S.L., Pawlak, J.J., Grunden, A.M.: Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste. Bioresour. Technol. 164, 100–105 (2014)

    Article  Google Scholar 

  46. Chen, Y., Chai, L., Tang, C., Yang, Z., Zheng, Y., Shi, Y., Zhang, H.: Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour. Technol. 123, 682–685 (2012)

    Article  Google Scholar 

  47. Dietrich, D., Illman, B., Crooks, C.: Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava. BMC Res. Notes 6, 219 (2013)

    Article  Google Scholar 

  48. Choi, S.Y., Gong, G., Park, H.S., Um, Y., Sim, S.J., Woo, H.M.: Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036. J. Biotechnol. 193, 11–13 (2015)

    Article  Google Scholar 

  49. Errington, J.: Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1, 117–126 (2003)

    Article  Google Scholar 

  50. Canganella, F., Wiegel, J.: Anaerobic thermophiles. Life 4, 77–104 (2014)

    Article  Google Scholar 

  51. Saripan, A.F., Reungsang, A.: Biohydrogen production by thermoanaerobacterium thermosaccharolyticum KKU-ED1: culture conditions optimization using xylan as the substrate. Int. J. Hydrog. Energy 38, 6167–6173 (2013)

    Article  Google Scholar 

  52. Li, Q., Liu, C.-Z.: Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. Int. J. Hydrog. Energy 37, 10648–10654 (2012)

    Article  Google Scholar 

  53. Maune, M.W., Tanner, R.S.: Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 62, 832–838 (2012)

    Article  Google Scholar 

  54. Tandishabo, K., Nakamura, K., Umetsu, K., Takamizawa, K.: Distribution and role of Coprothermobacter spp. in anaerobic digesters. J. Biosci. Bioeng. 114, 518–520 (2012)

    Article  Google Scholar 

  55. Cao, G.-L., Zhao, L., Wang, A.-J., Wang, Z.-Y., Ren, N.-Q.: Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol. Biofuels 7, 82 (2014)

    Article  Google Scholar 

  56. Gagliano, M.C., Braguglia, C.M., Petruccioli, M., Rossetti, S.: Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiol. Ecol. 91, 1–12 (2015)

    Article  Google Scholar 

  57. Sasaki, K., Morita, M., Sasaki, D., Nagaoka, J., Matsumoto, N., Ohmura, N., Shinozaki, H.: Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J. Biosci. Bioeng. 112, 469–472 (2011)

    Article  Google Scholar 

  58. Smith, K.S., Ingram-Smith, C.: Methanosaeta, the forgotten methanogen? TRENDS Microbiol. 15, 150–155 (2007)

    Article  Google Scholar 

  59. Kuever, J., Rainey, F.A., Widdel, F.: Bergey’s Manual of Systematic Bacteriology Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria. Bergey’s Manual of Systematic Bacteriology. Springer, New York, pp. 1007–1010 (2005)

    Book  Google Scholar 

  60. Gonzales, R.R., Sivagurunathan, P., Parthiban, A., Kim, S.H.: Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production. Int. Biodeterior. Biodegrad. 113, 22–27 (2016)

    Article  Google Scholar 

  61. Masset, J., Calusinska, M., Hamilton, C., Hiligsmann, S., Joris, B., Wilmotte, A., Thonart, P.: Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol. Biofuels 5, 35 (2012)

    Article  Google Scholar 

  62. Kumar, S.S., Sangeeta, R., Soumya, S., Ranjan, R.P., Bidyut, B., Kumar, D.M.P.: Characterizing novel thermophilic amylase producing bacteria from Taptapani hot spring, Odisha, India. Jundishapur J. Microbiol. 7, 10 (2014)

    Article  Google Scholar 

  63. Quéméneur, M., Hamelin, J., Barakat, A., Steyer, J.P., Carrre, H., Trably, E.: Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int. J. Hydrog. Energy 37, 3150–3159 (2012)

    Article  Google Scholar 

  64. Rasmussen, H., Sørensen, H.R., Meyer, A.S.: Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr. Res. 385, 45–57 (2014)

    Article  Google Scholar 

  65. Levin, D.B., Carere, C.R., Cicek, N., Sparling, R.: Challenges for biohydrogen production via direct lignocellulose fermentation. Int. J. Hydrog. Energy 34, 7390–7403 (2009)

    Article  Google Scholar 

  66. Lo, Y.C., Saratale, G.D., Chen, W.M., Bai, M., Chang, J.S.: Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb. Technol. 44, 417–425 (2009)

    Article  Google Scholar 

  67. Nissilä, M.E., Tähti, H.P., Rintala, J.A., Puhakka, J.A.: Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresour. Technol. 102, 4501–4506 (2011)

    Article  Google Scholar 

  68. Luo, G., Xie, L., Zou, Z., Wang, W., Zhou, Q.: Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour. Technol. 101, 959–964 (2010)

    Article  Google Scholar 

  69. HJ, B., G, A.: Bergey’s manual of systematic bacteriology. Man Syst Bacteriol. https://doi.org/10.1007/0-387-29298-5

  70. Mosey, F.E.: Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol. 15, 209 (1983)

    Article  Google Scholar 

  71. Li, C., Fang, H.H.P.: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1 (2007)

    Article  MathSciNet  Google Scholar 

  72. Cai, M., Liu, J., Wei, Y.: Enhanced biohydrogen production from sewage sludge with alkaline. Environ. Sci. Technol. 38, 3195–3202 (2004)

    Article  Google Scholar 

  73. Kim, J., Yu, Y., Lee, C.: Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure. Bioresour. Technol. 144, 194–201 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks the financial support of the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP- Process Number 2013/22346-6 and 2009/15984-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Bernadete Amâncio Varesche.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, L.A., Braga, J.K., Motteran, F. et al. Bioconversion of Sugarcane Bagasse into Value-Added Products by Bioaugmentation of Endogenous Cellulolytic and Fermentative Communities. Waste Biomass Valor 10, 1899–1912 (2019). https://doi.org/10.1007/s12649-018-0201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0201-5

Keywords

Navigation