Skip to main content

Advertisement

Log in

Cytotoxicity, Antioxidant and Antiviral Potential of Aqueous Extract from Nostoc muscorum Cultivated in Various Inexpensive Media

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The genus Nostoc is a valuable source of a wide spectrum of natural products, which have many different biological activities such as antioxidant, anticancer, anti-HIV, antimalarial, antifungal and antimicrobial drugs. The current work was aimed to evaluate the biological activities of Nostoc muscorum microalga cultivated on different waste water samples (domestic, agricultural and industrial waste water). The algae was cultivated in different kinds of waste water; sterilized BG11 media, non-sterilized treated sewage waste water media (NS-TSW), sterilized treated sewage waste water media (S-TSW), 50% BG11 + 50% sterilized TSW media (50% S-TSW), non-sterilized industrial waste water media (NS-IW), sterilized industrial waste water media (S-IW), 50% BG11 + 50% sterilized industrial waste water media (50% S-IW), non-sterilized agriculture waste water media (NS-AW), sterilized agriculture waste water media (S-AW), and 50% BG11 + 50% sterilized AW media (50% S-AW). The experiment was conducted in triplicate and cultures were incubated at 25 ± 1 °C under continuous shaking (150 rpm) and illumination (2000 lx) for 15 days. The pigments content and biological activity include antioxidant (using diphenyl picryl hydrazyl and 2,2-azino-bis ethylbenzthiazoline-6-sulfonic acid radical methods), antiviral activity against Herpes simplex virus and the cytotoxicity for aqueous extracts in vivo and in vitro assays were determined. The given results reported that use of waste water as media for cultivation of microalgae is a suitable and inexpensive method when compared with ordinary cultivation methods. Also We can conclude that the algal species has high ability to produce active ingredients used as antioxidants and antivirals especially from algae cultivated in S-TSW, 50% S-TSW, NS-AW and 50% S-AW without any toxicity in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABTS:

2,2-Azino-bis ethylbenzthiazoline-6-sulfonic acid

AW:

Agricultural waste water

ALT:

Alanine aminotransferase

APC:

Allophycocyanin

AST:

Aspartate aminotransferase

BHA:

Butylated hydroxyl anisol

BUN:

Blood urea nitrogen

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

DPPH:

Diphenyl picryl hydrazyl

HDL:

High density lipoprotein

GLU:

Glucose

IW:

Industrial waste water

LDL:

Low density lipoprotein

PE:

Phycoerythrin

TSW:

Treated sewage waste water

References

  1. Oudra, B., Andaloussi, M.E., Vasconcelos, V.M.: Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Oukaïmeden River (High-Atlas mountains of Marrakech, Morocco). Environ. Monit. Assess. 149, 437–444 (2009)

    Article  Google Scholar 

  2. Mostafa, S.M.S., Shalaby, E.A., Mahmoud, G.I.: Cultivating microalgae in domestic waste water for biodiesel production. Not. Sci. Biol. 4(1), 56–65 (2012)

    Article  Google Scholar 

  3. Noue, J.D., Laliberte, G., Proulx, D.: Algae and waste water. J. Appl. Phycol. 4(3), 247–254 (1992)

    Article  Google Scholar 

  4. Shalaby, E.A., Shanab, S.M.: Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Geo-Mar. Sci. 42(5), 556–564 (2013)

    Google Scholar 

  5. Nagasathya, A., Thajuddin, N.: Decolorization of paper mill effluent using hypersaline cyanobacteria. Res. Environ. Sci. 2(5), 408–414 (2008)

    Article  Google Scholar 

  6. Amirjani, M.R.: Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int. J. Bot. 7, 73–81 (2011)

    Article  Google Scholar 

  7. Karthikeyan, C.V., Gopalaswamy, G.: Studies on acid stress tolerant proteins of cyanobacterium. Int. J. Biol. Chem. 3, 1 (2009)

    Article  Google Scholar 

  8. Kumar, A.S., Miao, Z.H., Wyatt, S.K.: Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Biores. Technol. 101(15), 6012–6018 (2010)

    Article  Google Scholar 

  9. Singh, N., Rajini, P.S.: Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85, 611–616 (2004)

    Article  Google Scholar 

  10. Pulz, O., Gross, W.: Valuable products from biotechnology of microalgae. J. Appl. Microbiol. Biotechnol. 65, 635–648 (2004)

    Article  Google Scholar 

  11. Shalaby, E.A.: (2004). Chemical and biological studies on spirulina species. M Sc. Thesis, Department of Biochemistry, Faculty of Agriculture, Cairo University

  12. Rippka, R., Deruelles, J., Waterbury, J., Herdman, M., Stanier, R.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979)

    Google Scholar 

  13. APHA (1998). Standard methods for the examination of water and waste water, 20 edn. American Public Health Association, Washington, DC.

    Google Scholar 

  14. Bryant, D.A.: Phycoerythrin and phycocyanin properties and occurance in cyanobacteria. J. Gen. Microbiol. 128, 835–844 (1979)

    Google Scholar 

  15. Rossenthaler, L.:The Chemical Investigation of Plants. Translated into English by Sudhamoy Ghosh from the Third German edition. Bell and Sons. Ltd, London (1930)

    Google Scholar 

  16. Burits, M., Bucar, F.: Antioxidant activity of Nigella sativa essential oil. Phytother. Res. 14, 323–328 (2000)

    Article  Google Scholar 

  17. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 101–105 (1999)

    Article  Google Scholar 

  18. KaviarasanS.,G.H.Naik,R.Gangabhagirathi,C.V.Anuradha, K.I.Priyadarsini: In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum-graecum) seeds. Food Chem.103, 31–37 (2007)

    Article  Google Scholar 

  19. Silva, O., Barbose, S., Diniz, A., Valdeira, M., Gomes, E.: Plant extracts antiviral activity against Herpes simplex virus type 1 and African swine fever virus. Int. J. Pharm. 35, 12–16 (1997)

    Google Scholar 

  20. Mossman, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983)

    Article  Google Scholar 

  21. Bajpai, R., Sharma, N.K., Rai, A.K.: Hepatosplenomegaly and phytotoxicity of a planktonic cyanobacterium Nostoc sp. BHU001 isolated from agricultural pond. World J. Micro. Biotech. 25(11), 1995–2003 (2009)

    Article  Google Scholar 

  22. Repavich, W.M., Sonzogni, W.C., Standridge, J.H., Wedepohl, R.E., Meisner, L.F.: Cyanobacteria (blue-green algae) in Wisconsin waters: acute and chronic toxicity. Water Res. 24(2), 225–231 (1990)

    Article  Google Scholar 

  23. Erker, F., Slauohte, J., Bass, E.L., Pnvion, J., Wutoh, J.: (1985). Acute toxic effects in mice of an extract from the marine algae Gonyaulax monila ta. Toxicon. 23(5), 761–767

    Article  Google Scholar 

  24. Sotero-Santos, R.B., Carvalho, E.G., Dellamano-Oliveira, M.J.: Occurrence and toxicity of an Anabaena bloom in a tropical reservoir (Southeast Brazil). Harmful Algae. 7, 590–598 (2008)

    Article  Google Scholar 

  25. Carson, F.L., Hladik, C.: Histotechnology, A Self-Instructional Text, 3rd edn. American Society of Clinical Pathology Press, Oxford. pp 400, (2009)

    Google Scholar 

  26. Sokal, R.R., Rohlf, F.J., 1981. Biometry, 2nd edn. W. H. Freeman & Co., San Francisco, pp. 241–242

  27. El-Sheekh, M.M., El-Shouny, W.A., Osman, E.H., El-Gammal, E.W.: Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial waste water effluents. Environ. Toxicol. Pharmacol. 19(2), 357–365 (2005)

    Article  Google Scholar 

  28. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R.: Cultivation of green algae Chlorella sp. in different waste water from municipal waste water treatment plant. J. Appl. Biochem. Biotechnol. 162(4), 174–186 (2009)

    Article  Google Scholar 

  29. Sallal, A.K.J.: Growth of cyanobacteria on sewage effluents. Microbios. 46, 121–129 (1986)

    Google Scholar 

  30. Vasconcelos, V.M., Pereira, E.: Cyanobacteria diversity and toxicity in a waste water treatment plant (Portugal). J. Water Res. 35, 1354–1357 (2001)

    Article  Google Scholar 

  31. Glazer, A.N.: Phycobiliproteins a family of valuable widely used fluorophores. J. Appl. Phycol. 6, 105–112 (1994)

    Article  Google Scholar 

  32. Shalaby, E.A., Shanab, S.M.M, Singh, V.: Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. J. Med. Plant Res. 4(24), 2622–2632 (2010)

    Article  Google Scholar 

  33. Shalaby, E.A., Nasr, N.F., Sherief, S.M.: An in vitro study of the antimicrobial and antioxidant efficacy of some nature essential oils. J. Med. Plant Res. 5(6), 922–931 (2011)

    Google Scholar 

  34. Shalaby, E.A.: Algae as promising organisms for environment and health. Plant Signal. Behav. 6(9), 1338–1350 (2011)

    Article  Google Scholar 

  35. Shanab, S.M.M., Mostafa, S.S.M., Shalaby, E.A., Mahmoud, G.I.: Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac. J. Trop. Biomed. 2(8), 608–615 (2012)

    Article  Google Scholar 

  36. Fooa, S.C., Yusoff, F.Md., Ismail, M., Basri, M., Yaua, S.K., Khonga, N.M.H., Chana, K.W., Ebrahimi, M.: Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J. Biotechnol. 241, 175–183 (2017)

    Article  Google Scholar 

  37. Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., Sugawara, M., Iseki, K.: In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharmaceut. 403, 136–138 (2011)

    Article  Google Scholar 

  38. Romeilah, R.M., Fayed, S.A., Mahmoud, G.I.: Chemical compositions, antiviral and antioxidant activities of seven essential oils. J. Appl. Sci. Res. 6, 50–62 (2010)

    Google Scholar 

  39. Qiu, D., Guo, J., Yu, H., Yang, S., Li, X., Zhang, Y., Sun, J., Cong, J., He, S., Wei, D., Qin, J.: Antioxidant phenolic compounds isolated from wild Pyrus ussuriensis Maxim. fruit peels and leaves. Food Chem. 241(15), 182–187 (2018)

    Article  Google Scholar 

  40. Erker, F., Slauohte., J., Bass, E.L., Pnvion, J., Wutoh, J.: Acute toxic effects in mice of an extract from the marine algae Gonyaulax monila ta. Toxicity. 23(5), 761–767 (1985)

    Google Scholar 

  41. Carmichael, W.W.: Algal toxins. In: Callow R. Advances in Botanical Re­search, vol. 12, p. 47101. Academic Press, London (1986)

    Google Scholar 

  42. Machleder, D., Ivandic, B., Welch, C., Castellani, L., Reue, K.: Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. J. Clin. Invest. 99, 1406–1419 (1997)

    Article  Google Scholar 

  43. He, M., Su, H., Gao, W., Johansson, S.M., Liu, Q., Wu, X., Young, A.A., Bartfai, T., Wang, M.W., Liao, J.: Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice. PLoS ONE. 5(12), e14205 (2010)

    Article  Google Scholar 

  44. Serfilippi, L.M., Stackhouse, P.D., Russell, B., Spainhour, C.B.: Serum clinical chemistry and hematology reference values in outbred stocks of albino mice from three commonly used vendors and two inbred strains of albino mice. J. Am. Assoc. Lab. Animal Sci. 42(3), 46–52 (2003)

    Google Scholar 

  45. Fernández, I., Peña, A., Teso, N.D., Pérez, V., Rodríguez-Cuesta, J.: Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J. Am. Assoc. Lab. Anim. Sci. 49(2), 202–206 (2010)

    Google Scholar 

  46. Anon.: The National Cholesterol Education Program. J. American Medi. Assoc. 280(24), 2099–2104 (1998)

    Article  Google Scholar 

  47. Anon.: Normal Values In The Mouse. Iowa State University of Science and Technology (2012). http://www.lar.iastate.edu/index.php?option=com_content&view=article&id=113&Itemid=136

Download references

Acknowledgements

The authors are thankful to Faculty of Agriculture in University of Cairo and University of Tanta for providing the facilities.

Funding

This work was partially supported by a grant from the Science and Technology Development Fund (STDF-Project ID: 312), Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MBA, EAS, MAM. Performed the experiments: IAS, EAS, GIM Collection of data: IAS, MBA, EAS, MAM. Analyzed the data: MBA, EAS, IAS, HAE. DAL Contributed reagents/materials/analysis tools: MBA, IAS, EAS, GIM. Wrote the paper: EAS, HAE, DAL. Revising of manuscript: EAS, HAE, DAL.

Corresponding author

Correspondence to Emad A. Shalaby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, E.A., Atta, M.B., Sleem, I.A. et al. Cytotoxicity, Antioxidant and Antiviral Potential of Aqueous Extract from Nostoc muscorum Cultivated in Various Inexpensive Media. Waste Biomass Valor 10, 1419–1431 (2019). https://doi.org/10.1007/s12649-017-0188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0188-3

Keywords

Navigation