Skip to main content
Log in

Activated Carbon for Catalyst Support from Microwave Pyrolysis of Orange Peel

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Orange peel, representing an abundant fruit waste in Asia, was transformed into activated carbon via the use of microwave pyrolysis. The orange peel was first subjected to microwave pyrolysis over a range of microwave power in order to produce an optimal yield of activated carbon as the target product. The activated carbon was extensively characterized for its porous characteristics, N2 adsorption and desorption isotherms, thermal stability, and chemical composition in order to assess its potential to be used as a catalyst-support material. Microwave pyrolysis of orange peel showed an approximately 70 wt% yield of activated carbon over the range of microwave power considered. The activated carbon was detected to have a high BET surface area associated with type I isotherm, which indicates the presence of microporous structure, thus exhibiting a characteristic of high adsorption capacity. The high adsorption capacity suggests that the activated carbon produced using this pyrolysis approach could act as an adsorbent to adsorb metal ions, therefore it shows great potential to be used as a catalyst-support material—the base material to which catalytically active substance such as metal binds to form a heterogeneous catalyst. The activated carbon also demonstrated high thermal stability in N2 atmospheres, representing a durable material to be synthesized into a catalyst for use in thermal process. Our results show that the activated carbon produced from microwave pyrolysis of orange peel shows exceptional promise as a catalyst-support material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., Chemat, F.: Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason. Sonochem. 24, 72–79 (2015)

    Article  Google Scholar 

  2. Paggiola, G., Stempvoort, S.V., Bustamante, J., Barbero, J.M.V., Hunt, A.J., Clark, J.H.: Can biobased chemicals meet demand? Global and regional case study around citrus waste derived limonene as a solvent for cleaning applications. Biofuels Bioprod. Biorefin. 10(6), 686–698 (2016)

    Article  Google Scholar 

  3. Lou, X., Nair, J.: The impact of landfilling and composting on greenhouse gas emissions–a review. Bioresour. Technol. 100(16), 3792–3798 (2009)

    Article  Google Scholar 

  4. Ferhat, M.A., Meklati, B.Y., Smadja, J., Chemat, F.: An improved microwave Clevenger apparatus for distillation of essential oils from orange peel. J. Chromatogr. A 1112(1–2), 121–126 (2006). doi:10.1016/j.chroma.2005.12.030

    Article  Google Scholar 

  5. Ajmal, M., Rao, R.A.K., Ahmad, R., Ahmad, J.: Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79(1), 117–131 (2000)

    Article  Google Scholar 

  6. Li, X., Tang, Y., Cao, X., Lu, D., Luo, F., Shao, W.: Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloid. Surf. A 317(1), 512–521 (2008)

    Article  Google Scholar 

  7. Bhatnagar, A., Sillanpää, M., Witek-Krowiak, A.: Agricultural waste peels as versatile biomass for water purification—a review. Chem. Eng. J. 270, 244–271 (2015). doi:10.1016/j.cej.2015.01.135

    Article  Google Scholar 

  8. Hesas, R.H., Daud, W.M.A.W., Sahu, J., Arami-Niya, A.: The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. J. Anal. Appl. Pyrol. 100, 1–11 (2013)

    Article  Google Scholar 

  9. Ahmad, M.A., Alrozi, R.: Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology. Chem. Eng. J. 165(3), 883–890 (2010)

    Article  Google Scholar 

  10. Foo, K., Hameed, B.: Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation. Micropor. Mesopor. Mater. 148(1), 191–195 (2012)

    Article  Google Scholar 

  11. Njoku, V., Foo, K., Asif, M., Hameed, B.: Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem. Eng. J. 250, 198–204 (2014)

    Article  Google Scholar 

  12. El Nemr, A., Abdelwahab, O., El-Sikaily, A., Khaled, A.: Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. J. Hazard. Mater. 161(1), 102–110 (2009)

    Article  Google Scholar 

  13. Foo, K., Hameed, B.: Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresour. Technol. 104, 679–686 (2012)

    Article  Google Scholar 

  14. Nuithitikul, K., Srikhun, S., Hirunpraditkoon, S.: Kinetics and equilibrium adsorption of Basic Green 4 dye on activated carbon derived from durian peel: effects of pyrolysis and post-treatment conditions. J. Taiwan Inst. Chem. Eng. 41(5), 591–598 (2010). doi:10.1016/j.jtice.2010.01.007

    Article  Google Scholar 

  15. Le Van, K., Thi, T.T.L.: Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Prog. Nat. Sci. 24(3), 191–198 (2014)

    Article  Google Scholar 

  16. Rodríguez, N.H., Martínez-Ramírez, S., Blanco-Varela, M.T.: Activated carbon as an alternative fuel. Effect of carbon ash on cement clinkerization. J. Clean. Prod. 119, 50–58 (2016)

    Article  Google Scholar 

  17. Bu, Q., Lei, H., Wang, L., Wei, Y., Zhu, L., Liu, Y., Liang, J., Tang, J.: Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts. Bioresour. Technol. 142, 546–552 (2013). doi:10.1016/j.biortech.2013.05.073

  18. Bu, Q., Lei, H., Wang, L., Yadavalli, G., Wei, Y., Zhang, X., Zhu, L., Liu, Y.: Biofuel production from catalytic microwave pyrolysis of Douglas fir pellets over ferrum-modified activated carbon catalyst. J. Anal. Appl. Pyrol. 112, 74–79 (2015). doi:10.1016/j.jaap.2015.02.019

    Article  Google Scholar 

  19. Lompe, K.M., Menard, D., Barbeau, B.: Performance of biological magnetic powdered activated carbon for drinking water purification. Water Res. 96, 42–51 (2016)

    Article  Google Scholar 

  20. Ma, H., Teng, K., Fu, Y., Song, Y., Wang, Y., Dong, X.: Synthesis of visible-light responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction. Energy. Environ. Sci. 4(8), 3067 (2011). doi:10.1039/c1ee01095f

    Article  Google Scholar 

  21. Özhan, A., Şahin, Ö., Küçük, M.M., Saka, C.: Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose 21(4), 2457–2467 (2014)

    Article  Google Scholar 

  22. Saka, C.: BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J. Anal. Appl. Pyrol. 95, 21–24 (2012)

    Article  Google Scholar 

  23. Şahin, Ö., Saka, C: Preparation and characterization of activated carbon from acorn shell by physical activation with H2O–CO2 in two-step pretreatment. Bioresour. Technol. 136, 163–168 (2013)

    Article  Google Scholar 

  24. Julkapli, N.M., Bagheri, S.: Graphene supported heterogeneous catalysts: An overview. Int. J. Hydrog. Energy. 40(2), 948–979 (2015). doi:10.1016/j.ijhydene.2014.10.129

    Article  Google Scholar 

  25. Barbier, J., Lamy-Pitara, E., Marecot, P., Boitiaux, J., Cosyns, J., Verna, F.: Role of sulfur in catalytic hydrogenation reactions. Adv. Catal. 37, 279 (1990)

    Google Scholar 

  26. Lin, S.D., Sanders, D.K., Vannice, M.A.: Influence of metal-support effects on acetophenone hydrogenation over platinum. Appl. Catal. A 113(1), 59–73 (1994)

    Article  Google Scholar 

  27. Bhandari, P.N., Kumar, A., Bellmer, D.D., Huhnke, R.L.: Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas. Renew. Energy 66, 346–353 (2014)

    Article  Google Scholar 

  28. Kastner, J.R., Mani, S., Juneja, A.: Catalytic decomposition of tar using iron supported biochar. Fuel Process. Technol. 130, 31–37 (2015). doi:10.1016/j.fuproc.2014.09.038

  29. Lam, S.S., Liew, R.K., Cheng, C.K., Chase, H.A.: Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl. Catal. B 176–177, 601–617 (2015). doi:10.1016/j.apcatb.2015.04.014

  30. Li, W., Zhang, L.-b., Peng, J.-h., Li, N., Zhu, X.-y.: Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind. Crop. Prod. 27(3), 341–347 (2008)

    Article  Google Scholar 

  31. Jamaluddin, M.A., Ismail, K., Mohd Ishak, M.A., Ab Ghani, Z., Abdullah, M.F., Safian, M.T.-u., Idris, S.S., Tahiruddin, S., Mohammed Yunus, M.F., Mohd Hakimi, N.I.N.: Microwave-assisted pyrolysis of palm kernel shell: optimization using response surface methodology (RSM). Renew. Energ. 55, 357–365 (2013). doi:10.1016/j.renene.2012.12.042

    Article  Google Scholar 

  32. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Biomass proximate analysis using thermogravimetry. Bioresour. Technol. 139, 1–4 (2013)

    Article  Google Scholar 

  33. Lam, S.S., Liew, R.K., Lim, X.Y., Ani, F.N., Jusoh, A.: Fruit waste as feedstock for recovery by pyrolysis technique. Int. Biodeterior. Biodegrad. (2016)

  34. Veksha, A., McLaughlin, H., Layzell, D.B., Hill, J.M.: Pyrolysis of wood to biochar: increasing yield while maintaining microporosity. Bioresour. Technol. 153, 173–179 (2014). doi:10.1016/j.biortech.2013.11.082

    Article  Google Scholar 

  35. Foo, K., Hameed, B.: Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters. Bioresour. Technol. 103(1), 398–404 (2012)

    Article  Google Scholar 

  36. Kundu, A., Gupta, B.S., Hashim, M., Redzwan, G.: Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating. J. Clean. Prod. 105, 420–427 (2015)

    Article  Google Scholar 

  37. Ahmed, M.J., Dhedan, S.K.: Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Ph. Equilibr. 317, 9–14 (2012). doi:10.1016/j.fluid.2011.12.026

    Article  Google Scholar 

  38. Benadjemia, M., Millière, L., Reinert, L., Benderdouche, N., Duclaux, L.: Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process. Technol. 92(6), 1203–1212 (2011). doi:10.1016/j.fuproc.2011.01.014

    Article  Google Scholar 

  39. Xie, Z., Guan, W., Ji, F., Song, Z., Zhao, Y.: Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology. J. Chem. 2014 (2014). doi: 10.1155/2014/491912

    Google Scholar 

  40. Lam, S.S., Mahari, W.A.W., Cheng, C.K., Omar, R., Chong, C.T., Chase, H.A.: Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon. Energy 115, 791–799 (2016). doi:10.1016/j.energy.2016.09.076

    Article  Google Scholar 

  41. Deng, H., Yang, L., Tao, G., Dai, J.: Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution. J. Hazard. Mater. 166(2), 1514–1521 (2009)

    Article  Google Scholar 

  42. Foo, K., Hameed, B.: Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. Bioresour. Technol. 102(20), 9794–9799 (2011)

    Article  Google Scholar 

  43. Deng, H., Li, G., Yang, H., Tang, J., Tang, J.: Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem. Eng. J. 163(3), 373–381 (2010)

    Article  Google Scholar 

  44. Manya, J.J.: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46(15), 7939–7954 (2012). doi:10.1021/es301029g

    Article  Google Scholar 

  45. Blanco, P.H., Wu, C., Onwudili, J.A., Williams, P.T.: Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel. Appl. Catal. B 134–135, 238–250 (2013). doi:10.1016/j.apcatb.2013.01.016

    Article  Google Scholar 

  46. Lam, S.S., Liew, R.K., Jusoh, A., Chong, C.T., Ani, F.N., Chase, H.A.: Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew. Sustain. Energy Rev. 53, 741–753 (2016)

    Article  Google Scholar 

  47. Mahari, W.W., Zainuddin, N., Nik, W.W., Chong, C., Lam, S.: Pyrolysis recovery of waste shipping oil using microwave heating. Energies 9(10), 780 (2016)

    Article  Google Scholar 

  48. Molina-Sabio, M., Rodrıguez-Reinoso, F.: Role of chemical activation in the development of carbon porosity. Colloid. Surf. A 241(1), 15–25 (2004)

    Article  Google Scholar 

  49. Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E.C., Weiss-Hortala, E., Fiori, L.: Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag. 47, 114–121 (2016)

    Article  Google Scholar 

  50. Volpe, R., Messineo, A., Millan, M., Volpe, M., Kandiyoti, R.: Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown. Energy 82, 119–127 (2015)

    Article  Google Scholar 

  51. Jin, H., Wang, X., Shen, Y., Gu, Z.: A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors. J. Anal. Appl. Pyrol. 110, 18–23 (2014)

    Article  Google Scholar 

  52. Silveira, M., Comerford, N., Reddy, K., Cooper, W., El-Rifai, H.: Characterization of soil organic carbon pools by acid hydrolysis. Geoderma 144(1), 405–414 (2008)

    Article  Google Scholar 

  53. Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., Siemieniewska, T.: Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  Google Scholar 

  54. Shen, Y., Zhao, P., Shao, Q., Ma, D., Takahashi, F., Yoshikawa, K.: In-situ catalytic conversion of tar using rice husk char-supported nickel–iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B 152–153, 140–151 (2014). doi:10.1016/j.apcatb.2014.01.032

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Universiti Malaysia Terengganu for the conduct of the research. The authors also thanks to the technical support provided by all the laboratory assistant in Universiti Malaysia Terengganu that involved throughout this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Shiung Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, S.S., Liew, R.K., Wong, Y.M. et al. Activated Carbon for Catalyst Support from Microwave Pyrolysis of Orange Peel. Waste Biomass Valor 8, 2109–2119 (2017). https://doi.org/10.1007/s12649-016-9804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9804-x

Keywords

Navigation