Skip to main content

Advertisement

Log in

Optimization of Substrate Concentration for Sustainable Biohydrogen Production and Kinetics from Sugarcane Molasses: Experimental and Economical Assessment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of the study was to optimize the concentration of cane molasses (10, 20, 40 and 50 g/L) for bioconversion into hydrogen through the use of pure strain of anaerobic facultative bacteria Enterobacter aerogenes. The maximum hydrogen production rate (142 mL/h), hydrogen yield (6.02 mM/g sugar) and maximum specific growth rate (0.36 h−1) of bacteria was achieved on substrate concentration of 40 g/L at 30 °C with initial pH of 6.8. The present experimental data was found to be best fitted in Moser equation (R2 = 0.98) and compared with other growth models used in the study. The comparative economic feasibility of hydrogen production was also assessed and compared with ethanol production reported in the literature and it shows a better feasibility of biohydrogen production rate of 116.9 L/L molasses/day, than the ethanol production 0.375 L/L molasses/day, production cost of bioenergy at 0.046 $/L-molasses/day and high energy recovery of 1.26 MJ/L-molasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sgroi, F., Trapani, A.M.D., Fodera, M., Testa, R., Tudisca, S.: Economic performance of biogas plants using giant reed silage biomass feedstock. Ecol. Eng. 81, 481–487 (2015)

    Article  Google Scholar 

  2. Ciotola, R.J., Lansing, S., Martin, J.F.: Emergy analysis of biogas production and electricity generation from small-scale agricultural digesters. Ecol. Eng. 37(11), 1681–1691 (2011)

    Article  Google Scholar 

  3. Kothari, R., Tyagi, V.V., Pathak, A.: Waste-to-energy: a way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. 14(9), 3164–3170 (2010)

    Article  Google Scholar 

  4. Kothari, R., Singh, D.P., Tyagi, V.V., Tyagi, S.K.: Fermentative hydrogen production—an alternative clean energy source. Renew. Sustain. Energy Rev. 16(4), 2337–2346 (2012)

    Article  Google Scholar 

  5. Miura, Y., Akano, T., Fukatsu, K., Miyasaka, H., Mizoguchi, T., Yagi, K., Maeda, I., Ikuta, Y., Matsumoto, H.: Hydrogen production by photosynthetic microorganism. Energy Convers. Manag. 36, 903–906 (1995)

    Article  Google Scholar 

  6. Zhao, M.X., Ruan, W.Q.: Improving hydrogen generation from kitchen waste by microbial acetate tolerate response. Energy Convers. Manag. 77, 419–423 (2014)

    Article  Google Scholar 

  7. Chittibabu, G., Nath, K., Das, D.: Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem. 41(3), 682–688 (2006)

    Article  Google Scholar 

  8. Oh, Y.K., Seol, E.H., Kim, J.R., Park, S.: Fermentative biohydrogen production by a new chemo heterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 28(12), 1353–1359 (2003 )

    Article  Google Scholar 

  9. Kalia, V.C., Jain, S.R., Kumar, A., Joshi, A.P.: Fermentation of biowaste to H2 by Bacillus licheniformis. World J. Microbiol. Biotechnol. 10(2), 224–227 (1994)

    Article  Google Scholar 

  10. Nath, K., Kumar, A., Das, D.: Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. Can. J. Microbiol. 52(6), 525–532 (2006)

    Article  Google Scholar 

  11. Kumar, N., Das, D.: Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 35(6), 589–593 (2000)

    Article  Google Scholar 

  12. Chen, W.M., Tseng, Z.J., Lee, K.S., Chang, J.S.: Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy 30(10), 1063–1070 (2005)

    Article  Google Scholar 

  13. Evyernie, D., Morimoto, K., Karita, S., Kimura, T., Sakka, K., Ohmiya, K.: Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. J. Biosci. Bioeng. 91(4), 339–343 (2001)

    Article  Google Scholar 

  14. Levin, D.B., Islam, R., Cicek, N., Sparling, R.: Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energy 31(11), 1496–1503 (2006)

    Article  Google Scholar 

  15. Seppala, J.J., Puhakka, J.A., Olli, Y.H., Matti, T.K., Ville, S.: Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and co cultures. Int. J. Hydrogen Energy 36(17), 701–708 (2011)

    Article  Google Scholar 

  16. Roy, S., Vishnuvardhan, M., Das, D.: Continuous thermophilic biohydrogen production in packed bed reactor. Appl. Energy 136, 51–58 (2014)

    Article  Google Scholar 

  17. Yan, J., Lin, T.: Biofuels in Asia. Appl. Energy 86, S1–S10 (2009)

    Article  Google Scholar 

  18. Srirangan, K., Akawi, L., Moo-Young, M., Chou, C.P.: Towards sustainable production of clean energy carriers from biomass resources. Appl. Energy 100, 172–186 (2012)

    Article  Google Scholar 

  19. Mohan, S.V., Babu, L.V., Sharma, P.N.: Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzyme Microb. Technol. 41(3), 506–515 (2007)

    Article  Google Scholar 

  20. Khanal, S.K., Hsieng, W.C., Li, L., Sung, S.: Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 29(11), 1123–1131 (2004)

    Google Scholar 

  21. Chen, Y.C., Sen, B., Chyi-How, L., Yi-Chun, L., Chiu-Yue, L.: Direct fermentation of sweet potato to produce maximal hydrogen and ethanol. Appl. Energy 100, 10–18 (2012)

    Article  Google Scholar 

  22. Monod, J.: The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949)

    Article  Google Scholar 

  23. Lineweaver, H., Burk, D.J.: Am. Chem. Soc. 56, 658–666 (1934)

    Article  Google Scholar 

  24. Fatemeh, A.: Investigation of the nutrient uptake and cell growth kinetics with Monod and Moser models for Penicillium brevicompactum ATCC 16024 in batch bioreactor. Iran. J. Energy Environ. 2(2), 117–121 (2011)

    Google Scholar 

  25. Hanes, C.S.: Biochem. J. 26, 1406–1421 (1932)

    Article  Google Scholar 

  26. Hofstee, B.H.: J. Nat. 184, 1296–1298 (1959)

    Article  Google Scholar 

  27. Walker, M., Zhang, Y., Heaven, S., Banks, C.: Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour. Technol. 100(24), 6339–6346 (2009)

    Article  Google Scholar 

  28. APHA: Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC, USA (1995)

    Google Scholar 

  29. Loewus, F.A.: Improvement in the anthrone method for determination of carbohydrates. Anal. Chem. 24(1), 219–219 (1952)

    Article  Google Scholar 

  30. Lay, J., Li, Y., Noike, T.: Mathematical model for methane production from landfill bioreactor. J. Environ. Eng. 124(8), 730–736 (1998)

    Article  Google Scholar 

  31. Kiviharju, K., Salonen, K.M., Eerikainen, L.T.: Kinetics of Bifidobacterium longum ATCC 15707 growth. Process Biochem. 42(7), 1140–1145 (2007)

    Article  Google Scholar 

  32. Ren, N., Lia, J., Lib, B., Wanga, Y., Liua, S.: Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy 31(15), 2147–2157 (2006)

    Article  Google Scholar 

  33. Yu, H.Q., Mu, Y.: Biological hydrogen production in a UASB reactor with granules II: reactor performance in 3 year operation. Biotechnol. Bioeng. 94(5), 988–995 (2006)

    Article  Google Scholar 

  34. Tanisho, S., Ishiwata, Y.: Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int. J. Hydrogen Energy 19(10), 807–812 (1994)

    Article  Google Scholar 

  35. Wu, J.H., Lin, C.Y.: Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci. Technol. 49(5–6), 223–228 (2004)

    Google Scholar 

  36. Akutsu, Y., Lee, D.Y., Chi, Y.Z., Li, Y.Y., Harada, H., Yu, H.Q.: Thermohilic fermentative hydrogen production from starch waste-water with bio-granules. Int. J. Hydrogen Energy 34(12), 5061–5071 (2009)

    Article  Google Scholar 

  37. Kopsahelis, N., Agouridis, N., Bekatorou, A., Kanellaki, M.: Comparative study of spent grains and delignified spent grains as yeast supports for alcohol production from molasses. Bioresour. Technol. 98(7), 1440–1447 (2007)

    Article  Google Scholar 

  38. Park, M.J., Jo, H.J., Park, D., Lee, D.S., Park, J.M.: Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int. J. Hydrogen Energy 35(12), 6194–6202 (2014)

    Article  Google Scholar 

  39. Indian Sugar Mills Association. http://www.indiansugar.com/Statics.aspx

  40. Das, D.: Advances in biohydrogen production processes: an approach towards commercialization. Int. J. Hydrogen Energy 34(17), 7349–7357 (2009)

    Article  Google Scholar 

  41. EIA, Natural Gas Futures Prices. http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm

  42. EIA, Spot Prices. http://www.eia.gov/forecasts/steo/report/prices.cfm

  43. Michael, C., Nathan, M., Christopher, C., John, B.: Two-phase anaerobic digestion for production of hydrogenemethane mixtures. Bioresour. Technol. 98(14), 2641–2651 (2007)

    Article  Google Scholar 

  44. Kyazze, G., Dinsdale, R., Guwy, A.J., Hawkes, F.R., Premier, G.C., Hawkes, D.L.: Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Biotechnol. Bioeng. 97(7), 759–770 (2007)

    Article  Google Scholar 

  45. Han, S.-K., Kim, S.-H., Kim, H.-W., Shin, H.-S.: Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis. Water Sci. Technol. 52(1–2), 131–138 (2005)

    Google Scholar 

  46. Gavala, H.N., Skiadas, I.V., Ahring, B.K., Lyberatos, G.: Potential for biohydrogen and methane production from olive pulp. Water Sci. Technol. 52(1–2), 209–215 (2005)

    Google Scholar 

  47. Georgia, A., Katerina, S., Nikolaos, V., Michael, K., Gerasimos, L.: Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind. Eng. Chem. Res. 47(15), 5227–5233 (2008)

    Article  Google Scholar 

  48. Liang, Y.C.: Two-Phase Bioenergy Fermentation Using Condensed Molasses Fermentation Soluble. Dissertation, Feng Chia University, Taiwan (2009)

Download references

Acknowledgements

The authors want to acknowledge Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow (U.P.), India and Sardar Swarn Singh National Institute of Renewable Energy, Kapurthala, (Punjab), India, for providing laboratory facility to carry out the experimental works.

Funding

Funding was provided by University Grants Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Kothari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kothari, R., Pathak, V.V. et al. Optimization of Substrate Concentration for Sustainable Biohydrogen Production and Kinetics from Sugarcane Molasses: Experimental and Economical Assessment. Waste Biomass Valor 9, 273–281 (2018). https://doi.org/10.1007/s12649-016-9760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9760-5

Keywords

Navigation