Skip to main content

Advertisement

Log in

Economic and environmental aspects of steam-explosion pretreatment

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Steam explosion pretreatment allows deep disintegration of internal cell structures in biomass by a sharp pressure change. The process has been increasingly used in cases where lower natural resistance of biomass is needed for subsequent processing techniques. Steam-explosion is relatively energy-intensive and therefore it is preferably incorporated into technologies with excess of waste heat. Utilization of hot exhaust gases from a cogeneration unit of a biogas station is one of the most profitable examples. The portfolio of other potential applications includes various hydrolyzing and fermentation techniques for production of alcohols, biogas, animal feed or soil improvers. This comprehensive review of the topic summarizes the up–to–date knowledge for facilitation of its future research. The general objective is to facilitate any reasonable efforts to avoid unnecessary landfilling of organic matter that is poorly biodegradable in its natural form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ballesteros, I., Negro, M.J., Oliva, J.M., Cabañas, A., Manzanares, P., Ballesteros, M.: Ethanol production from steam-explosion pretreated wheat straw. Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals, pp. 496–508. Humana Press, New York (2006)

    Chapter  Google Scholar 

  2. Bourka, A., Malamis, D., Venetis, C., Moustakas, K., Konstantzos, G.E., Skiadi, O., Loizidou, M.: Athens–biowaste model: cost and carbon footprint calculation of the collection at source and treatment of biowaste. Waste Biomass Valoriz. 6(5), 685–698 (2015)

    Article  Google Scholar 

  3. Carvalheiro, F., Duarte, L. C., Gírio, F.M.: Hemicellulose biorefineries: a review on biomass pretreatments. J. Sci. Ind Res 67, 849–864 (2008)

    Google Scholar 

  4. Clark, J.H., Deswarte, F. (eds.): Introduction to Chemicals from Biomass. Wiley, USA (2015)

    Google Scholar 

  5. Colberg, P.J.: Anaerobic Microbial Degradation of Cellulose, Lignin, Oligolignols, and Monoaromatic Lignin Derivatives, vol. 28, pp. 886–889. Wiley-Interscience, New York (1988)

    Google Scholar 

  6. Colón, J., Cadena, E., Colazo, A.B., Quirós, R., Sánchez, A., Font, X., Artola, A.: Toward the implementation of new regional biowaste management plans: environmental assessment of different waste management scenarios in Catalonia. Resour. Conserv. Recycl. 95, 143–155 (2015)

    Article  Google Scholar 

  7. Czerkawski, J.W.: An Introduction to Rumen Studies. Elsevier, USA (2013)

    Google Scholar 

  8. Datar, R., Huang, J., Maness, P.C., Mohagheghi, A., Czernik, S., Chornet, E.: Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrog. Energy 32(8), 932–939 (2007)

    Article  Google Scholar 

  9. Dererie, D.Y., Trobro, S., Momeni, M.H., Hansson, H., Blomqvist, J., Passoth, V., Ståhlberg, J.: Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw. Bioresour. Technol. 102(6), 4449–4455 (2011)

    Article  Google Scholar 

  10. Estevez, M.M., Linjordet, R., Morken, J.: Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays. Bioresour. Technol. 104, 749–756 (2012)

    Article  Google Scholar 

  11. Glasser, W.G., Wright, R.S.: Steam–assisted biomass fractionation. II. Fractionation behavior of various biomass resources. Biomass Bioenergy 14(3), 219–235 (1998)

    Article  Google Scholar 

  12. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813), 804–807 (2007)

    Article  Google Scholar 

  13. Himmel, M.E.: Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Wiley-Blackwell, Ney York (2009)

    Google Scholar 

  14. Hongzhang, C., Liying, L.: Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour. Technol. 98(3), 666–676 (2007)

    Article  Google Scholar 

  15. Kaar, W.E., Gutierrez, C.V., Kinoshita, C.M.: Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy 14(3), 277–287 (1998)

    Article  Google Scholar 

  16. Kitayama, T., Morimoto, M., Takatani, M., Tamura, Y., Takumi, M., Okamoto, T.: Isolation of hemicellulose from a sorghum, Andropogon sorghum Brot, Kumadake no. 263, and determination of its constituent sugars. Carbohydr. Res. 325(3), 230–232 (2000)

    Article  Google Scholar 

  17. Kuhad, R.C., Singh, A., Eriksson, K.E.L.: Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Biotechnology in the Pulp and Paper Industry, pp. 45–125. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  18. Kobayashi, F., Take, H., Asada, C., Nakamura, Y.: Methane production from steam-exploded bamboo. J. Biosci. Bioeng. 97(6), 426–428 (2004)

    Article  Google Scholar 

  19. Lehmann, J., Joseph, S. (eds.): Biochar for Environmental Management: Science, Technology and Implementation. Routledge, UK (2015)

    Google Scholar 

  20. Li, J., Henriksson, G., Gellerstedt, G.: Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98(16), 3061–3068 (2007)

    Article  Google Scholar 

  21. Malherbe, S., Cloete, T.E.: Lignocellulose biodegradation: fundamentals and applications. Rev. Environ. Sci. Biotechnol. 1(2), 105–114 (2002)

    Article  Google Scholar 

  22. Mardoyan, A., Braun, P.: Analysis of Czech subsidies for solid biofuels. Int. J. Green Energy 12, 405–408 (2015)

    Article  Google Scholar 

  23. Maroušek, J.:Finding the optimal parameters for the steam explosion process of hay. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia 35(2), 1–9 (2012)

    Google Scholar 

  24. Maroušek, J., Kawamitsu, Y., Ueno, M., Kondo, Y., Kolář, L.: Methods for improving methane yield from rye straw. Appl. Eng. Agric. 28(5), 747–755 (2012)

    Article  Google Scholar 

  25. Maroušek, J.: Prospects in straw disintegration for biogas production. Environ. Sci. Pollut. Res. 20(10), 7268–7274 (2013)

    Article  Google Scholar 

  26. Maroušek, J.: Study on agriculture decision–makers behavior on sustainable energy utilization. J. Agric. Environ. Ethics 26(3), 679–689 (2013)

    Article  Google Scholar 

  27. Maroušek, J.: Removal of hardly fermentable ballast from the maize silage to accelerate biogas production. Ind. Crops Prod. 44, 253–257 (2013)

    Article  Google Scholar 

  28. Maroušek, J.: Study on commercial scale steam explosion of winter Brassica napus straw. Int. J. Green Energy 10(9), 944–951 (2013)

    Article  Google Scholar 

  29. Maroušek, J., Kondo, Y., Ueno, M., Kawamitsu, Y.: Commercial–scale utilization of greenhouse residues. Biotechnol. Appl. Biochem. 60(2), 253–258 (2013)

    Article  Google Scholar 

  30. Maroušek, J.: Novel technique to enhance the disintegration effect of the pressure waves on oilseeds. Ind. Crops Prod. 53, 1–5 (2014)

    Article  Google Scholar 

  31. Maroušek, J., Hašková, S., Zeman, R., Váchal, J., Vaníčková, R.: Processing of residues from biogas plants for energy purposes. Clean Technol. Environ. Policy 17(3), 797–801 (2015)

    Article  Google Scholar 

  32. Maroušek, J., Hašková, S., Zeman, R., Váchal, J., Vaníčková, R.: Nutrient management in processing of steam–exploded lignocellulose phytomass. Chem. Eng. Technol. 37(11), 1945–1948 (2014)

    Article  Google Scholar 

  33. McHenry, M.P.: Carbon-based stock feed additives: a research methodology that explores ecologically delivered C biosequestration, alongside live weights, feed use efficiency, soil nutrient retention, and perennial fodder plantations. J. Sci. Food Agric. 90(2), 183–187 (2010)

    Article  Google Scholar 

  34. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)

    Article  Google Scholar 

  35. Oliva, J.M., Sáez, F., Ballesteros, I., González, A., Negro, M.J., Manzanares, P., Ballesteros, M.: Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Biotechnology for Fuels and Chemicals, pp. 141–153. Humana Press, Ney York (2003)

    Chapter  Google Scholar 

  36. Overend, R.P., Chornet, E., Gascoigne, J.A.: Fractionation of lignocellulosics by steam–aqueous pretreatments. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 321(1561), 523–536 (1987)

    Article  Google Scholar 

  37. Philippidis, G.P., Smith, T.K., Wyman, C.E.: Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol. Bioeng. 41(9), 846–853 (1993)

    Article  Google Scholar 

  38. Puri, V.P.: Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol. Bioeng. 26(10), 1219–1222 (1984)

    Article  Google Scholar 

  39. Roblin, J.P., Duran, H., Duran, E., Gorrichon, L., Donnadieu, B.: X–ray Structure of a Trimeric 5, 5′–Biaryl/erythro–β–O–4–ether Lignin Model: evidence for Through-Space Weak Interactions. Chemistry–A. European Journal 6(7), 1229–1235 (2000)

    Article  Google Scholar 

  40. Smetanová, A., Dotterweich, M., Diehl, D., Ulrich, U., Dotterweich, N.F.: Influence of biochar and terra preta substrates on wettability and erodibility of soils. Zeitschrift für Geomorphologie, Supplementary Issues 57(1), 111–134 (2013)

    Article  Google Scholar 

  41. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  42. Tanahashi, M.: Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood Res. Bull. Wood Res. Inst. Kyoto Univ. 77, 49–117 (1990)

    Google Scholar 

  43. Tomme, P., Warren, R.A.J., Gilkes, N.R.: Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37(1), 1–81 (1995)

    Article  Google Scholar 

  44. van Wyk, J.P.: Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol. 19(5), 172–177 (2001)

    Article  Google Scholar 

  45. Wachendorf, M., Richter, F., Fricke, T., Graß, R., Neff, R.: Utilization of semi–natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass Forage Sci. 64, 132–143 (2009)

    Article  Google Scholar 

  46. Yamashiki, T., Matsui, T., Saitoh, M., Okajima, K., Kamide, K., Sawada, T.: Characterisation of cellulose treated by the steam explosion method. Part 1: influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure. Br. Polym. J. 22(1), 73–83 (1990)

    Article  Google Scholar 

  47. Zhang, M., Su, R., Qi, W., He, Z.: Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl. Biochem. Biotechnol. 160(5), 1407–1414 (2010)

    Article  Google Scholar 

  48. Zhao, X., Cheng, K., Liu, D.: Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 82(5), 815–827 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the support provided by the Quality Innovation of the Year 2014 award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Vochozka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vochozka, M., Maroušková, A., Váchal, J. et al. Economic and environmental aspects of steam-explosion pretreatment. Waste Biomass Valor 7, 1549–1554 (2016). https://doi.org/10.1007/s12649-016-9555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9555-8

Keywords

Navigation