Skip to main content

Advertisement

Log in

FTIR Analysis and Optimization of Simultaneous Saccharification and Fermentation Parameters for Sustainable Production of Ethanol from Peels of Ananas cosmosus by Mucor indicus MTCC 4349

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The pulverized A. cosmosus peel was found to contain 25 ± 0.31 % cellulose, 28 ± 0.18 % hemicellulose and 8 ± 0.07 % of lignin on dry solid basis. 1 % H2SO4 delignified A. cosmosus peel yielded 38.81 % xylose, 29.31 % fructose and 18.89 % glucose under steam explosion, with a hydrolytic efficiency of 75.52 %. Fourier transform infrared spectroscopy results not only indicated the penetration of H2SO4 in the amorphous region of the biomass and degradation of hemicelluloses but also shows the structural differences before and after pretreatment. Simultaneous Saccharification and Fermentation of pretreated A. cosmosus peel by cellulase and Mucor indicus MTCC 4349 were investigated in the present study. Important process variables for ethanol production from pretreated A. cosmosus peel were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A three level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (30, 32 and 34 °C) X1, inoculum level (2, 4 and 6 %) X2 and nutrients (1/2/3) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out at flask level. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (30 °C), inoculum level (2 %) and fermentation medium (urea, NaH2PO4, tryptone and meat extract) for Mucor indicus MTCC 4349. Maximum ethanol concentration 10.4293 g/l was obtained after 72 h from Mucor indicus MTCC 4349 at the optimized process conditions in aerobic batch fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Sotcks, B.J., Erbach, D.C.: In: Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. DOE/GO-10 2005-2135, April. US Department of Energy and US Department of Agriculture. Oak Ridge National laboratory. USA, pp. 1–78 (2005)

  2. Wheals, A.E., Basso, L.C., Denise, M., Alves, G., Amorim, H.: Fuel ethanol after 25 years. Trend Biotechnol. 17, 482–487 (1999)

    Article  Google Scholar 

  3. Wang, F.S., Sheu, J.W.: Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast. Chem. Eng. Sci. 55, 3685–3695 (2000)

    Article  Google Scholar 

  4. Mitchell, D.: In: A Note of Rising Food Prices. Policy research working paper 4682. Development Prospects Group. pp. 1–21. The World Bank, Washington, DC, USA (2008)

  5. Erukainure, O.L., Ajiboye, J.A., Adejobi, R.O., Okafor, O.Y., Adenekan, S.O.: Protective effect of pineapple (Ananas cosmosus) peel extract on alcohol-induced oxidative stress in brain tissues of male albino rats. Asian Pacific J. Trop. Dis. 1, 5–9 (2011)

    Article  Google Scholar 

  6. Nishio, N., Nagai, S., Leelayuwapan, K.: Ethanol production from pineapple waste. In: Proceedings of conference on energy, Chulalongkorn University, Bangkok (Thailand) (1980) v. 3(pt. 30)

  7. Bhandari, S.V., Panchapakesan, A., Shankar, N., Kumar, H.G.A.: Production of bioethanol from fruit rinds by saccharification and fermentation. Int. J. Sci. Res. Eng. Technol. 2(6), 362–365 (2013)

    Google Scholar 

  8. Smith, B.G., Harris, P.J.: Polysaccharide composition of unlignified cell walls of pineapple [Ananas comosus (L.) Merr.] Fruit. Plant Physiol. 107, 1399–1409 (1995)

    Article  Google Scholar 

  9. Roda, A., De Faveri, D.M., Dordoni, R., Lambri, M.: Vinegar production from pineapple wastes—preliminary saccharification trials. Chem. Eng. Trans. 37 (2014). doi:10.3303/CET1437102

  10. Itelima, J., Onwuliri, F., Onwuliri, E., Onyimba, I., Oforji, S.: Bio-ethanol production from banana, plantain and pineapple peels by simultaneous saccharification and fermentation process. Int. J. Envt. Sci. Dev. 4, 213–216 (2013)

    Article  Google Scholar 

  11. Hansen, M.A.T., Hidayat, B.J., Mogensen, K.K., Jeppesen, M.D., Jørgensen, B., Johansen, K.S., Thygesen, L.G.: Enzyme affinity to cell types in pineapple peel (Triticum aestivum L.) before and after hydrothermal pretreatment. Biotechnol. Biofuels. 6, 54 (2013)

    Article  Google Scholar 

  12. Sharifia, M., Karimi, K., Taherzadeh, M.J.: Production of ethanol by filamentous and yeast like forms of Mucor indicus from fructose, glucose, sucrose and molasses. J. Ind. Microbiol. Biotechnol. 35, 1253–1259 (2008)

    Article  Google Scholar 

  13. Koffi, L.B., Han, Y.W.: Alcohol production from pineapple waste. World J. Microbiol. Biotechnol. 6(3), 281–284 (1990)

    Article  Google Scholar 

  14. Bhatia, L., Johri, S., Ahmad, R.: An economic and ecological perspective of ethanol production from renewable agro-waste- A review. Appl. Microbiol. Biotechnol. Exp. 2, 65 (2012). doi:10.1186/2191-0855-2-65

  15. Tappi Test Methods.: Technical Association of the Pulp and Paper Institute (TAPPI), Atlanta, Georgia, USA (1992)

  16. Szczodrak, J., Fiedurek, J.: Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenerg. 10, 367–375 (1996)

    Article  Google Scholar 

  17. Kaar, W.E., Gutierrez, C.V., Kinoshita, C.M.: Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenerg. 14(3), 277–287 (1998)

    Article  Google Scholar 

  18. Carvalheiro, F., Duarte, L.C., Lopes, S., Parajo, J.C., Pereira, H., Girio, F.M.: Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Proc. Biochem. 40, 1215–1223 (2005)

    Article  Google Scholar 

  19. Chandel, A.K., da Silva, S.S., Singh, O.V.: Detoxification of Lignocellulose Hydrolysates: biochemical and Metabolic Engineering towards White Biotechnology. Bioenerg Res. 6, 388–401 (2013)

    Article  Google Scholar 

  20. Abdulla, E., Feanov, T., Costa, S., Robra, M.K., Paulo, C.A., Gubitz, M.G.: Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl. Environ. Microbiol. 66, 3357–3362 (2000)

    Article  Google Scholar 

  21. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  22. Singhania, R.R., Skumaran, R.K., Pillai, A., Prema, P., Szakacs, G., Pandey, A.: Solid-state fermentation of lignocellulosic substrates for cellulase production by Trichoderma reesei NRRL 11460. Indian J Biotechnol. 5, 332–336 (2006)

    Google Scholar 

  23. Singh, A., Abidi, A.B., Darmwal, N.S., Agarwal, A.K.: Saccharification of cellulosic substrates by Aspergillus niger cellulase. World J. Microbiol. Biotechnol. 6, 333–336 (1990)

    Article  Google Scholar 

  24. Pasha, C., Valli, N., Rao, L.V.: Lantana camara for fuel ethanol production using thermotolerant yeast. Lett. Appl. Microbiol. 44, 666–672 (2007)

    Article  Google Scholar 

  25. Smidsrod, O., Skjak-Braek, G.: Alginate as an immobilization matrix for cells. Trends Biotechnol. 8(3), 71–78 (1990)

    Article  Google Scholar 

  26. Chandel, A.K., Narasu, M.L., Chandrasekhar, G., Manikyam, A., Rao, L.V.: Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour. Technol. 100, 2404–2410 (2009)

    Article  Google Scholar 

  27. Giovanni, M.: Response surface methodology and product optimization. J. Food Technol. 37, 41–45 (1983)

    Google Scholar 

  28. Sasikumar, E., Viruthagiri, T.: Simultaneous saccharification and fermentation (SSF) of sugarcane bagasse—kinetics and modeling. Int. J. Chem. Biolog. Eng. 3(2), 57–64 (2010)

    Google Scholar 

  29. Mirahmadi, K., Kabir, M.M., Jeihanipour, A., Karimi, K., Taherzadeh, M.J.: Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5(2), 928–938 (2010)

    Google Scholar 

  30. Pandey, K.K., Pitman, A.J.: FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodet. Biodeg. 52, 151–160 (2003)

    Article  Google Scholar 

  31. Oh, S.Y., Yoo, D., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H., Youk, J.H.: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd. Res. 340, 2376–2391 (2005)

    Article  Google Scholar 

  32. Colom, X., Carrillo, F., Nogues, F., Garriga, P.: Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 80, 543–549 (2003)

    Article  Google Scholar 

  33. Dwivedi, P., Vivekanand, V., Pareek, N., Sharma, A., Singh, R.P.: Bleach enhancement of mixed wood pulp by xylanase-laccase concoction derived through co-culture strategy. Appl. Biochem. Biotechnol. 160, 255–268 (2010)

    Article  Google Scholar 

  34. Pandey, K.K.: A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 12, 1969–1975 (1999)

    Article  Google Scholar 

  35. Chandel, A.K., Antunes, F.A., Anjos, V.: Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuel. 6, 4 (2013). doi:10.1186/1754-6834-6-4

    Article  Google Scholar 

  36. Berlin, A., Maximenko, V., Gilkes, N., Saddler, J.N.: Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng. 97, 287–296 (2007)

    Article  Google Scholar 

  37. Rezende, C.A., de Lima, M.A., Maziero, P., deAzevedo, E.R., Garcia, W., Polikarpov, I.: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels 4, 54 (2011). doi:10.1186/1754-6834-4-54

    Article  Google Scholar 

  38. Tu, M., Chandra, R., Saddler, J.N.: Evaluating the distribution of cellulases and recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol. Prog. 23, 398–406 (2007)

    Article  Google Scholar 

  39. Kim, T.H., Taylor, F., Hicks, K.: Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Biores. Technol. 99, 5694–5702 (2008)

    Article  Google Scholar 

  40. Cheung, S.W., Anderson, B.C.: Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour. Technol. 59, 81–96 (1997)

    Article  Google Scholar 

  41. Huang, X.L., Penner, M.H.: Apparent substrate inhibition of the Trichoderma reesei cellulase system. J. Agric. Food Chem. 39, 2096–2100 (1991)

    Article  Google Scholar 

  42. Penner, M.H., Liaw, E.T.: Kinetic consequences of high ratios of substrate to enzyme saccharification systems based on Trichoderma cellulase. In: Himmel, M.E., Baker, J.O., Overend, R.P. (eds.) Enzymatic Conversion of Biomass for Fuels Production, pp. 363–371. American Chemical Society, Washington, DC (1994)

    Chapter  Google Scholar 

  43. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification and fermentation of pineapple peel to ethanol. Proc. Biochem. 40, 3693–3700 (2005)

    Article  Google Scholar 

  44. Zheng, Y., Pan, Z., Zhang, R., Wang, D.: Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production. Appl. Ener. 86, 2459–2467 (2009)

    Article  Google Scholar 

  45. Santos, V.T.O., Esteves, P.J., Milagres, A.M.F., Carvalho, W.: Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid. J. Ind. Microbiol. Biotechnol. 38, 1089–1098 (2011)

    Article  Google Scholar 

  46. Kristensen, J.B., Borjesson, J., Bruun, M.H., Tjerneld, F., Jorgensen, H.: Use of surface active additives in enzymatic hydrolysis of pineapple peel lignocelluloses. Enzyme Microbial. Technol. 40, 888–895 (2007)

    Article  Google Scholar 

  47. Białas, W., Czerniak, A., Szymanowska-Powałowska, D.: Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production. Acta Biochim. Pol. 61(1), 153–162 (2014)

    Google Scholar 

  48. Białas, W., Szymanowska, D., Grajek, W.: Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling. Bioresour. Technol. 101, 3126–3131 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Hon’ble Vice Chancellor of Bilaspur University for his constant support. We are grateful to the Department of Zoology, Dr. Hari Singh Gour Central University, Sagar, M.P., India, for help in HPLC analysis work. We are also thankful to Dr Suresh Thareja, Pharmacy department, Guru Ghasidas Central University, Bilaspur, C.G., India, for his help in FTIR analysis work. RSM work was completed in Department of Microbiology and Bioinformatics of Bilaspur University, Bilaspur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latika Bhatia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, L., Johri, S. FTIR Analysis and Optimization of Simultaneous Saccharification and Fermentation Parameters for Sustainable Production of Ethanol from Peels of Ananas cosmosus by Mucor indicus MTCC 4349. Waste Biomass Valor 7, 427–438 (2016). https://doi.org/10.1007/s12649-015-9462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9462-4

Keywords

Navigation