Skip to main content
Log in

Influence of Protein Extraction Techniques of Different De-oiled Residues from Jatropha curcas L. on Protein Recovery and Techno-functional Properties

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

As Jatropha curcas L. is a non-edible energy plant biodiesel production from J. curcas L. crude oil is an important field of interest in order to avoid the ‘tank or table’ discussion. As a by-product from oil extraction, high amounts of Jatropha meals are obtained requiring a concept for its sustainable utilization. Due to the high protein content (up to 40 %) in Jatropha seed cakes, added value can be generated by extraction of these proteins for further applications. The present study compared an aqueous and an enzyme-assisted process for protein extraction from screw-pressed and aqueous de-oiled Jatropha residue. Additionally, different methods for protein recovery were evaluated. Aqueous-extracted proteins were recovered by ultrafiltration, isoelectric precipitation and/or lyophilisation while the proteins from enzyme-assisted extraction were only lyophilized. Functionality of the obtained protein products was determined indicating good emulsifying properties as well as a good gelation behaviour for the aqueous-extracted proteins. In general, proteins from enzyme-assisted extraction had slightly lower functionality. The study indicates potential for the application of Jatropha proteins as emulsifiers in biodegradable bags or as antifoam agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jongschaap, R.E.E., Corré, W.J., Bindraban, P.S., Brandenburg, W.A.: Claims and Facts on Jatropha curcas L., chapter 1, report no. 158, pp. 1–4. Plant Research International B.V. (2007)

  2. Brittaine, R., Lutaladio, N.: Jatropha: A Smallholder Bioenergy Crop. The Potential for Pro-Poor Development. Integrated Crop Management, chapter 1, vol. 8, pp. 1–12 (2010)

  3. Juan, J.C., Kartika, D.A., Wu, T.Y., Hin, T.Y.Y.: Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresou. Technol. 102(2), 452–460 (2011). doi:10.1016/j.biortech.2010.09.093

    Article  Google Scholar 

  4. Nazir, N., Ramli, N., Mangunwidjaja, D., Hambali, E., Setyaningsih, D., Yuliani, S., Yarmo, M.A., Salimon, J.: Extraction, transesterification and process control in biodiesel production from Jatropha curcas. Eur. J. Lipid Sci. Technol. 111(12), 1185–1200 (2009). doi:10.1002/ejlt.200800259

    Article  Google Scholar 

  5. Becker, K., Makkar, H.: Jatropha curcas: a potential source for tomorrow’s oil and biodiesel. Lipid Techno. 20(5), 104–107 (2008)

    Article  Google Scholar 

  6. Makkar, H.P.S., Becker, K., Sporer, F., Wink, M.: Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J. Agric. Food Chem. 45(8), 3152–3157 (1997)

    Article  Google Scholar 

  7. Makkar, H., Becker, K.: Method for detoxifying plant constituents. World Intellectual Property Organization (ed.), WO 2010/092143 A1, Germany, pp. 1–49 (2010)

  8. Wang, X.-H., Ou, L., Fu, L.-L., Zheng, S., Lou, J.-D., Gomes-Laranjo, J., Li, J., Zhang, C.: Detoxification of Jatropha curcas kernel cake by a novel Streptomyces fimicarius strain. J. Hazard. Mater. 260, 238–246 (2013). doi:10.1016/j.jhazmat.2013.05.012

    Article  Google Scholar 

  9. Moure, A., Sineiro, J., Dominguez, H., Parajo, J.C.: Functionality of oilseed protein products: a review. Food Res. Int. 39(9), 945–963 (2006). doi:10.1016/j.foodres.2006.07.002

    Article  Google Scholar 

  10. Alsohaimy, S.A., Sitohy, M.Z., El-Masry, R.A.: Isolation and partial characterization of chickpea, lupine and lentil seed proteins. World J. Agric. Sci. 3(1), 123–129 (2007)

    Google Scholar 

  11. Sussmann, D., Pickardt, C., Schweiggert, U., Eisner, P.: Influence of different processing parameters on the isolation of lupin (Lupinus angustifolius L.) protein isolates: a preliminary study. J. Food Process Eng 36(1), 1–11 (2011)

    Google Scholar 

  12. Lusas, E.W., Riaz, M.N.: Soy protein products—processing and use. J. Nutr. 125(3), S573–S580 (1995)

    Google Scholar 

  13. Vioque, J., Sanchez-Vioque, R., Pedroche, J., Yust, M.D., Millan, F.: Production and uses of protein concentrates and isolates. Grasas Aceites 52(2), 127–131 (2001)

    Google Scholar 

  14. Wasche, A., Muller, K., Knauf, U.: New processing of lupin protein isolates and functional properties. Nahrung 45(6), 393–395 (2001)

    Article  Google Scholar 

  15. Saetae, D., Kleekayai, T., Jayasena, V., Suntornsuk, W.: Functional properties of protein isolate obtained from physic nut (Jatropha curcas L.) seed cake. Food Sci. Biotechnol. 20(1), 29–37 (2011). doi:10.1007/s10068-011-0005-x

    Article  Google Scholar 

  16. Makkar, H.P.S., Francis, G., Becker, K.: Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J. Sci. Food Agric. 88(9), 1542–1548 (2008). doi:10.1002/Jsfa.3248

    Article  Google Scholar 

  17. Devappa, R.K., Swamylingappa, B.: Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J. Sci. Food Agric. 88(5), 911–919 (2008). doi:10.1002/Jsfa.3170

    Article  Google Scholar 

  18. Sterchi, E.E., Stöcker, W.: Proteolytic enzymes—Tools and targets. Springer, Berlin (1998)

    Google Scholar 

  19. Treimo, J., Aspmo, S.I., Eijsink, V.G.H., Horn, S.J.: Enzymatic solubilization of proteins in brewer’s spent grain. J. Agric. Food Chem. 56(13), 5359–5365 (2008). doi:10.1021/Jf073317s

    Article  Google Scholar 

  20. Apiwatanapiwat, W., Vaithanomsat, P., Somkliang, P., Malapant, T.: Optimization of protein hydrolysate production process from Jatropha curcas cake. Eng. Technol. 53, 109–112 (2009)

    Google Scholar 

  21. Gofferjé, G., Klingele, S., Staebler, A., Schweiggert-Weisz, U.: Comparison of two protein extraction techniques utilizing aqueous de-oiled residue from Jatropha curcas L. Waste Biomass Valoriz. 5, 33–41 (2014). doi:10.1007/s12649-013-9229-8

    Article  Google Scholar 

  22. Ersson, B., Rydén, L., Janson, J.-C.: Introduction to protein purification. In: Janson, J.-C. (ed.) Protein purification—Principles, high resolution methods, and applications, vol. 54, pp. 3–21. Wiley, New Jersey (2011)

    Google Scholar 

  23. Scopes, R.K.: Protein purification—Principles and practise, 3rd edn. Springer Science and Business Media, LLC, New York (1994)

    Book  Google Scholar 

  24. Foster, P.R., Dunnill, P., Lilly, M.D.: Kinetics of protein salting-out—Precipitation of yeast enzymes by ammonium-sulfate. Biotechnol. Bioeng. 18(4), 545–580 (1976). doi:10.1002/bit.260180408

    Article  Google Scholar 

  25. Kozinski, A.A., Lightfoo, E.N.: Protein ultrafiltration—general example of boundary-layer filtration. AIChE J. 18(5), 1030–1040 (1972). doi:10.1002/aic.690180523

    Article  Google Scholar 

  26. Maa, Y.F., Nguyen, P.A., Andya, J.D., Dasovich, N., Sweeney, T.D., Shire, S.J., Hsu, C.C.: Effect of spray drying and subsequent processing conditions on residual moisture content and physical/biochemical stability of protein inhalation powders. Pharm. Res. 15(5), 768–775 (1998). doi:10.1023/A:1011983322594

    Article  Google Scholar 

  27. Masters, K.: Spray drying handbook, 3rd edn. Halsted Press, Sydney (1979)

    Google Scholar 

  28. Makkar, H.P.S., Aderibigbe, A.O., Becker, K.: Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem. 62(2), 207–215 (1998). doi:10.1016/S0308-8146(97)00183-0

    Article  Google Scholar 

  29. Hamarneh, A.I., Heeres, H.J., Broekhuis, A.A., Picchioni, F.: Extraction of Jatropha curcas proteins and application in polyketone-based wood adhesives. Int. J. Adhes. Adhes. 30(7), 615–625 (2010). doi:10.1016/j.ijadhadh.2010.06.001

    Article  Google Scholar 

  30. Selje-Assmann, N., Makkar, H.P.S., Hoffmann, E.M., Francis, G., Becker, K.: Quantitative and qualitative analyses of seed storage proteins from toxic and non-toxic varieties of Jatropha curcas L. Eaap Public 124, 625–626 (2007)

    Google Scholar 

  31. Peralta-Flores, L., Gallegos-Tintore, S., Solorza-Feria, J., Davila-Ortiz, G., Chel-Guerrero, L., Martinez-Ayala, A.: Biochemical evaluation of protein fractions from physic nut (Jatropha curcas L.). Grasas Aceites 63(3), 253–259 (2012). doi:10.3989/gya.072511

    Article  Google Scholar 

  32. Usman, L.A., Ameen, O.M., Ibiyemi, S.A., Muhammad, N.O.: The extraction of proteins from the neem seed (Indica azadirachta A-Juss). Afr. J. Biotechnol. 4(10), 1142–1144 (2005)

    Google Scholar 

  33. Lestari, D., Mulder, W.J., Sanders, J.P.M.: Jatropha seed protein functional properties for technical applications. Biochem. Eng. J. 53(3), 297–304 (2011). doi:10.1016/j.bej.2010.12.003

    Article  Google Scholar 

  34. Saetae, D., Suntornsuk, W.: Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake. Int. J. Mol. Sci. 12(1), 66–77 (2011). doi:10.3390/Ijms12010066

    Article  Google Scholar 

  35. Kinsella, J.E.: Functional-properties of soy proteins. J. Am. Oil Chem. Soc. 56(3), 242–258 (1979). doi:10.1007/Bf02671468

    Article  Google Scholar 

  36. AOAC: Protein (crude) in animal feed. Official methods of analysis of the Association of Official Analytical Chemists (AOAC) 15 Ed. (1990)

  37. Frister, H., Meisel, H., Schlimme, E.: Opa method modified by use of N, N-dimethyl-2-mercaptoethylammonium chloride as thiol component. Fresen. Z. Anal. Chem. 330(7), 631–633 (1988)

    Article  Google Scholar 

  38. Nielsen, P.M., Petersen, D., Dambmann, C.: Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66(5), 642–646 (2001)

    Article  Google Scholar 

  39. AACC: Method 56-20. Hydration capacity of pregelatinized cereal products. In: Chemists, A.A.o.C. (ed.) Approved Methods of the AACC. AACC International, St. Paul (2000)

  40. Ludwig, I., Ludwig, E., Pingel, B.: Micro-method for the determination of the fat-holding capacity of proteins. Nahrung 33(1), 99–101 (1989)

    Article  Google Scholar 

  41. Coffman, C.W., Garcia, V.V.: Functional properties and amino acid content of protein isolate form mung bean flour. J. Food Technol. 12, 473–484 (1977)

    Article  Google Scholar 

  42. Renkema, J.M.S.: Relations between rheological properties and network structure of soy protein gels. Food Hydrocoll. 18(1), 39–47 (2004). doi:10.1016/S0268-005x(03)00040-7

    Article  Google Scholar 

  43. Sousa, I.M.N., Mitchell, J.R., Ledward, D.A., Hill, S.E., daCosta, M.L.B.: Differential scanning calorimetry of lupin and soy proteins. Z. Lebensm. Unters. For. 201(6), 566–569 (1995)

    Article  Google Scholar 

  44. Morr, C.V., German, B., Kinsella, J.E., Regenstein, J.M., Vanburen, J.P., Kilara, A., Lewis, B.A., Mangino, M.E.: A collaborative study to develop a standardized food protein solubility procedure. J. Food Sci. 50(6), 1715–1718 (1985)

    Article  Google Scholar 

  45. Adler-Nissen, J.: Enzymatic hydrolysis of proteins for increased solubility. J. Agric. Food Chem. 24(6), 1090–1093 (1976)

    Article  Google Scholar 

  46. Rosenthal, A., Pyle, D.L., Niranjan, K.: Simultaneous aqueous extraction of oil and protein from soybean: mechanisms for process design. Food Bioprod. Process. 76(C4), 224–230 (1998). doi:10.1205/096030898532124

    Article  Google Scholar 

  47. de Moura, J.M.L.N., Campbell, K., de Almeida, N.M., Glatz, C.E., Johnson, L.A.: Protein extraction and membrane recovery in enzyme-assisted aqueous extraction processing of soybeans. J. Am. Oil Chem. Soc. 88(6), 877–889 (2011). doi:10.1007/s11746-010-1737-0

    Article  Google Scholar 

  48. Latif, S., Diosady, L.L., Anwar, F.: Enzyme-assisted aqueous extraction of oil and protein from canola (Brassica napus L.) seeds. Eur. J. Lipid Sci. Technol. 110(10), 887–892 (2008). doi:10.1002/ejlt.200700319

    Article  Google Scholar 

  49. Sari, Y.W., Bruins, M.E., Sanders, J.P.M.: Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Ind. Crop Prod. 43, 78–83 (2013). doi:10.1016/j.indcrop.2012.07.014

    Article  Google Scholar 

  50. León-López, L., Dávila-Ortiz, G., Jiménez-Martínez, C., Hernández-Sánchez, H.: Sequentially integrated optimization of the conditions to obtain a high-protein and low-antinutritional factors protein isolate from edible Jatropha curcas seed cake. ISRN Biotechnol. (2013). doi:10.5402/2013/197201

    Google Scholar 

  51. Omosaiye, O., Cheryan, M.: Ultrafiltration of soybean water extracts—processing characteristics and yields. J. Food Sci. 44(4), 1027–1031 (1979). doi:10.1111/j.1365-2621.1979.tb03438.x

    Article  Google Scholar 

  52. Mueller, K., Eisner, P., Yoshie-Stark, Y., Nakada, R., Kirchhoff, E.: Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.). J. Food Eng. 98(4), 453–460 (2010). doi:10.1016/j.jfoodeng.2010.01.028

    Article  Google Scholar 

  53. Kilara, A., Sharkasi, T.Y.: Effects of temperature on food proteins and its implications on functional-properties. Crit. Rev. Food Sci. 23(4), 323–395 (1986)

    Article  Google Scholar 

  54. Raymundo, A., Franco, J., Gallegos, C., Empis, J., Sousa, I.: Effect of thermal denaturation of lupin protein on its emulsifying properties. Nahrung 42(3–4), 220–224 (1998). doi:10.1002/(Sici)1521-3803(199808)42:03/04<220:Aid-Food220>3.0.Co;2-Q

    Article  Google Scholar 

  55. Damodaran, S.: Protein stabilization of emulsions and foams. J. Food Sci. 70(3), R54–R66 (2005)

    Article  Google Scholar 

  56. Dickinson, E.: Flocculation of protein-stabilized oil-in-water emulsions. Colloid Surf. B 81(1), 130–140 (2010). doi:10.1016/j.colsurfb.2010.06.033

    Article  MathSciNet  Google Scholar 

  57. Renkema, J.M.S., Gruppen, H., van Vliet, T.: Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. J. Agric. Food Chem. 50(21), 6064–6071 (2002). doi:10.1021/Jf020061b

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the German Federal Ministry of Education and Research (BMBF). The authors are grateful to GEA Westfalia Separator AG (Germany) for supplying ADJR and to ASA Spezialenzyme GmbH (Germany) for supplying Protease A01 preparation. We thank Mrs. Sigrid Gruppe, Mrs. Evi Müller, Mrs. Elfriede Bischof and Mrs. Sigrid Bergmann for the chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gofferjé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gofferjé, G., Zöttl, A., Stäbler, A. et al. Influence of Protein Extraction Techniques of Different De-oiled Residues from Jatropha curcas L. on Protein Recovery and Techno-functional Properties. Waste Biomass Valor 6, 225–235 (2015). https://doi.org/10.1007/s12649-014-9342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9342-3

Keywords

Navigation