Skip to main content
Log in

Synthesis, microstructural, optical, dielectric, and magnetic behavior of pure and co-doped (Cr, Fe) tin oxide (Sn1−2xCrxFexO2−δ) nanoparticles by using both co-precipitation and solid-state reaction method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

During the last two decades, researchers have been making efforts to find the most suitable metal oxides to be utilized for spintronics applications, magneto-optical devices, quantum dots, etc. Thus current research has examined the microstructural, optical, dielectric, and magnetic behavior of co-doped (Cr, Fe) tin oxide (Sn1−2xCrxFexO2−δ) nanoparticles. The Cr and Fe-doped (Sn1−xCrxO2−δ), (Sn1−xFexO2−δ) and co-doped (Cr, Fe) tin oxide (Sn1−2xCrxFexO2−δ) for x = 0.1 have been synthesized by solid-state reaction method from the tin oxide, chromium oxide, and ferric oxide prepared by co-precipitation method. Powder x-ray diffraction reveals the formation of pure rutile type tetragonal phase of samples and average crystalline size was found to be in the range of 45–54 nm. The electronic state of elements Sn, Cr, and Fe was observed to be 4+, 6+, and 3+, respectively, from x-ray photoelectron spectroscopy. The shape and size of the particles were observed to be cubic and in the range of 52–70 nm by scanning electron microscope. On the other hand, transmission electron microscopic reveals the grain size of 25–36 nm. The optical band gap determined from UV–visible absorption spectroscopy was found to be widened by doping. The maximum dielectric loss (5.3) was observed for pristine SnO2 and low loss (0.78) for co-doped (Cr, Fe) tin oxides from P–E measurement. The vibrating sample magnetometer studies show the transition from diamagnetism to ferromagnetism after co-doping. We found improvement in ferromagnetism and ferroelectricity due to co-doping, therefore the sample is suitable for high-frequency optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw data can be obtained on request from the corresponding author.

References

  1. H Ohno Science 281 951 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. G Prinz Science 282 1660 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. S A Wolf et al Science 294 1488 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Q Chen, K Sua, H Wanga and Q Chen J. Non-Cryst. Solid 493 20 (2018).

    Article  CAS  ADS  Google Scholar 

  5. G Shin et al ACS nano 5 10009 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. J Pan, H Shen and S Mathur J. Nanotechnol. 2012 1 (2012).

    Article  Google Scholar 

  7. K Kumari and M Ahmaruzzaman Matter. Res. Bull. 168 112446 (2023).

    Article  CAS  Google Scholar 

  8. E T Selvi, S M Sundar, P Selvakumar and P M Ponnusamy J. Mater. Sci. Mater. Electron. 28 7713 (2017).

    Article  CAS  Google Scholar 

  9. F Li, Q Liu, H Jiawen, J Yang and J Ma J. Phys. D: Appl. Phys. 53 353001 (2020).

    Article  CAS  ADS  Google Scholar 

  10. X Guan, N Cai, C Yang, J Chen and P Lu Thin Solid Films 605 273 (2016).

    Article  CAS  ADS  Google Scholar 

  11. L Chouhan and S K Srivastava J. Solid State Chem. 307 122828 (2022).

    Article  CAS  Google Scholar 

  12. R Narzary, B Dey, L Chouhan and S Kumar Sci. Semicond. Process. 142 106477 (2022).

    Article  CAS  Google Scholar 

  13. J Wang, D Zhou, Y Li and P Wu Vacuum 141 62 (2017).

    Article  CAS  ADS  Google Scholar 

  14. F Liu, Z Gao, H Jin and Y Meng J. Mater. Sci. 54 10609 (2019).

    Article  CAS  ADS  Google Scholar 

  15. S Srivastava J. Supercond. Novel Magn. 33 2501 (2020).

    Article  CAS  Google Scholar 

  16. T Tangcharoen J. Aust. Ceram. Soc. 59 29 (2023).

    Article  CAS  Google Scholar 

  17. M Venkatesan, R D Gunning, P Stamenov and J M D Coey J. Appl. Phys. 103 07D135 (2008).

    Article  Google Scholar 

  18. L Li et al Vacuum 182 109681 (2020).

    Article  ADS  Google Scholar 

  19. A Gupta, R Zhang, P Kumar, V Kumar and A Kumar Magnetochemistry 6 15 (2020).

    Article  CAS  Google Scholar 

  20. S Gupta, D Nath, F Singh and R Das Nucl. Instrum. Methods Phys. Res. B 400 37 (2017).

    Article  CAS  ADS  Google Scholar 

  21. L Xiong, Y Guo, J Wen, H Liu, G Yang and P Qin Adv. Funct. Mater. 28 1802757 (2018).

    Article  Google Scholar 

  22. B Seddik, B Salima, G Houda and F Abdelhakim J. At. Mol. Condens. Nano Phys. 7 145 (2020).

    Article  Google Scholar 

  23. S Sarmah and A Kumar Indian J. Phys. 84 1211 (2010).

    Article  CAS  ADS  Google Scholar 

  24. F A Akgul, C Gumus, O E Ali, A H Farha, G Akgul, Y Ufuktepe and Z Liu J. Alloys Comp. 579 50 (2013).

    Article  CAS  Google Scholar 

  25. A B Glot, R Bulpett, A I Ivon and P M Gallegos-Acevedo Phys. B: Condens. Matter 457 108 (2015).

    Article  CAS  ADS  Google Scholar 

  26. Y Li et al NPG Asia Mater. 4 e30 (2012).

    Article  Google Scholar 

  27. D Liu, Y Wang, X Hao, H Zheng and T Zhang Peng Zhang Sol. RRL 3 1800292 (2019).

    Article  Google Scholar 

  28. T Isono et al J. Soc. Inf. Disp. 15 161 (2007).

    Article  CAS  Google Scholar 

  29. K Kato J. Electron Devices Soc. 7 1201 (2019).

    Article  CAS  Google Scholar 

  30. H W Kim et al ACS Appl. Mater. Interfaces 9 31667 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. J H Bang et al. Ceram. Int. 45 7723 (2019).

    Article  CAS  Google Scholar 

  32. H S Hong, T Dai Lam, T Trung and N Van Hieu Talanta 88 15 (2012).

    Google Scholar 

  33. B Narzary, B Dey, S N Rout, A Mondal, G Bouzerar, M Kar, S Ravi and S K Srivastava J. Alloys Comp. 934 167874 (2023).

    Article  CAS  Google Scholar 

  34. R Narzary et al Magnetochemistry 8 150 (2022).

    Article  CAS  Google Scholar 

  35. S K Srivastava et al Mater. Res. Express 6 126107 (2019).

    Article  CAS  ADS  Google Scholar 

  36. K K Singha, A Mondal, M Gupta, V G Sathe, D Kumar and S K Srivastava J. Mater. Sci.: Mater. Electron. 34 1421 (2023).

    CAS  Google Scholar 

  37. B Dey et al J. Mater. Sci.: Mater. Electron. 33 2855 (2022).

    CAS  Google Scholar 

  38. H Wang, Y Yan, Y S Mohammed and X Du J. Magn. Magn. Mater. 321 337 (2009).

    Article  CAS  ADS  Google Scholar 

  39. W Z Xiao and H Luo Phys. J. B 80 337 (2011).

    CAS  ADS  Google Scholar 

  40. L B Shi Sci. Semicond. Process. 16 877 (2013).

    Article  CAS  Google Scholar 

  41. S B Ogale, R J Choudhary, J P Buban, S E Lofland, S R Shinde, S N Kale et al Phys. Rev. Lett. 91 077205 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. N H Hong and J Sakai J. Phys. Condens. Matter 17 1697 (2005).

    Article  CAS  ADS  Google Scholar 

  43. N Ahmad, S Khan and M M Nizam Ansari Ceram. Int. 44 15972 (2018).

    Article  CAS  Google Scholar 

  44. M Duhan, N Kumar, A Gupta, A Singh and H Kaur Vacuum 181 109635 (2020).

    Article  CAS  ADS  Google Scholar 

  45. D Rehani and M Saxena J. Supercond. Novel. Magn. 35 2573 (2022).

    Article  CAS  Google Scholar 

  46. T R Cunha, I M Costa and R J S Lima J. Supercond. Nov. Magn. 26 2299 (2013).

    Article  CAS  Google Scholar 

  47. T Ahmad J. Alloys Compd. 615 263 (2014).

    Article  CAS  Google Scholar 

  48. E T Selvi and S M Sundar J. Mater. Sci.: Mater. Electron. 28 15021 (2017).

    Google Scholar 

  49. S Roy Condens. Matter 21 e00393 (2019).

    Google Scholar 

  50. P Mohanapriya et al J. Nanosci. Nanotechnol. 13 5391 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. S A Ahmed Solid State Commun. 150 2190 (2010).

    Article  CAS  ADS  Google Scholar 

  52. L Lin et al Vacuum 18 109681 (2020).

    Article  ADS  Google Scholar 

  53. D S Gavaskar, P Nagaraju, Y Vijayakumar, P S Reddy and M V Ramana Reddy J. Asian Ceram. Soc. 8 605 (2020).

    Article  Google Scholar 

  54. C V Reddy, R R Kakarla, J Shim, R R Zairov and T M Aminabhavi Env. Res. 217 114672 (2023).

    Article  CAS  Google Scholar 

  55. S K Jain et al ACS Omega 7 14138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. M Kuppan and S Kaleemulla Condens. Matter Phys. 2014 1 (2014).

    Google Scholar 

  57. L Prakash and C Tirupathi J. Nanosci. Technol. 4 478 (2018).

    Article  Google Scholar 

  58. R Al-Gaashani, S Radiman, N Tabet and A R Daud Mater. Sci. Eng.: B 177 462 (2012).

    Article  CAS  Google Scholar 

  59. A R Denton and N W Ashcroft Phys. Rev. A 43 3161 (1991).

    Article  CAS  PubMed  ADS  Google Scholar 

  60. T Preethi et al Sci. Technol. 2022 1 (2022).

    Google Scholar 

  61. L Zhang, S Ge, Y Zuo, J Wang and J Qi Script. Mater. 63 953 (2010).

    Article  CAS  Google Scholar 

  62. T Ungar and A Borbely Appl. Phys. Lett. 69 3173 (1996).

    Article  CAS  ADS  Google Scholar 

  63. A Muiruri, M Maringa and W du Preez Mater. 13 5355 (2020).

    Article  CAS  Google Scholar 

  64. N Lavanya, S Radhakrishnan, N Sudhan, C Sekar and S G Leonardi Nanotechnol. 25 295501 (2014).

    Article  CAS  ADS  Google Scholar 

  65. K A Rahman et al Ionics 25 3363 (2019).

    Article  CAS  Google Scholar 

  66. L Li et al Energy & Fuels 3 1749 (2019).

    CAS  Google Scholar 

  67. S Yang, X Song, P Zhang, J Sun and L Gao Small 10 2270 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. R Awasthi, K Asokan and B Das Phys. A 125 338 (2019).

    CAS  Google Scholar 

  69. G T Rao, B Babu, R V Ravikumar, J Shim and C V Reddy Mater. Res. Express 4 125021 (2017).

    Article  ADS  Google Scholar 

  70. S Muruganandam, K Parivathini and G Murugadoss Phys. A 127 1 (2021).

    Google Scholar 

  71. P Uniyal and K L Yadav J. Phys. Condens. Matt. 21 012205 (2009).

    Article  CAS  ADS  Google Scholar 

  72. V Siva Jahnavia, S K Tripathy and A V N Ramalingeswara Rao Phys. B Condens. Matter 565 61 (2019).

    Article  ADS  Google Scholar 

  73. A M Feroz, M B Khalid, C Indrajeet and G M Bhat J. Mater. Sci.: Mater. Electron. 25 1564 (2014).

    Google Scholar 

  74. S Gnanam and V Rajendran J. Sol-Gel Sci. Technol. 56 128 (2010).

    Article  CAS  Google Scholar 

  75. M Khan and A Parveen J. Nanotechnol. Res. 2 10 (2020).

    Article  Google Scholar 

  76. Y Y Zulfiqar, J Yang, W Wang, Z Ye and L Jianguo Ceram. Int. 42 17128 (2016).

    Article  CAS  Google Scholar 

  77. A Sharma, M Varshney and S Kumar Nanomater Nanotechnol. 1 6 (2011).

    Article  Google Scholar 

  78. R Adhikari and A K Das Phys. Rev. B 78 024404 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Vasant G. Sathe, Centre-Director of UGC-DAE Consortium for Scientific Research (Indore, India) for TEM, XPS, UV-Vis, P-E (Dielectric), and VSM measurements. We are also thankful to Late Dr. Piyush Jaiswal, (Nanotechnology department) and Prof. M. K. Dutta (Director, Centre of Advanced Studies), Dr. A.P.J.A.K.T.U (Lucknow, India) for SEM studies.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

BD: Review and editing Supervision, and investigation. AV: Conceptualization, writing original draft preparation, data curation, methodology and all work.

Corresponding author

Correspondence to Archana Verma.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Das, B. Synthesis, microstructural, optical, dielectric, and magnetic behavior of pure and co-doped (Cr, Fe) tin oxide (Sn1−2xCrxFexO2−δ) nanoparticles by using both co-precipitation and solid-state reaction method. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03119-1

Keywords

Navigation