Skip to main content
Log in

Fine-tuning a few nonlinear optical properties of doped GaAs quantum dot by spatial spread of impurity under the aegis of noise

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Present work inspects the role of spatial impurity spread (SIS) on oscillator strength (OS) and two nonlinear optical (NLO) properties of GaAs quantum dot (QD) containing impurity. The NLO properties include total optical absorption coefficient (TOAC) and the total optical refractive index change (TORIC). The said properties are studied under the influence of Gaussian white noise (GWN) that has been applied to the doped QD by means of additive and multiplicative routes. The study manifests the delicate interplay between noise and SIS that finally designs the NLO properties. TOAC and TORIC reveal red-shift as SIS enhances both with and without noise. OS, however, shows steady fall with enhancement of SIS. The study also indicates plausible ways of attaining very large NLO response by applying GWN in a particular pathway. Depending upon the application of noise and its route of introduction, the OS and the NLO properties can either be depleted or amplified to different extents in comparison with the noise-free situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

It is hereby stated that the current manuscript has no associated data.

References

  1. M Barseghyan, A Manaselyan, A A Kirakosyan, L M Pérez and D Laroze Nanostructures 117 113807 (2020)

    CAS  Google Scholar 

  2. H Dakhlaoui, W Belhadj, M O Musa and F Ungan Eur. Phys. J. Plus 138 1 (2023)

    Article  Google Scholar 

  3. H Dakhlaoui, W Belhadj, M O Musa and F Ungan Optik 277 170684 (2023)

    Article  ADS  CAS  Google Scholar 

  4. K Lotfy and A A El-Bary Silicon 14 4809 (2022)

    Article  CAS  Google Scholar 

  5. M A Ezzat J. Thermophys. 36 1684 (2015)

    Article  ADS  CAS  Google Scholar 

  6. A M S Mahdy and Kh Lotfy Phys. J. Plus 136 553 (2021)

    Article  Google Scholar 

  7. A M S Mahdy and Kh Lotfy Phys. J. Plus 136 651 (2021)

    Article  CAS  Google Scholar 

  8. M Yasein, N Mabrouk, K Lotfy and A A El-Bary Res. Phys. 25 4731 (2019)

    Google Scholar 

  9. M A Ezzat and A A El-Bary Int. J. Therm. Sci 100 305 (2019)

    Article  Google Scholar 

  10. S Baskoutas, E Paspalakis and A F Terzis J. Phys.: Condens. Mat. 19 395024 (2007)

    Google Scholar 

  11. I Karabulut and S Baskoutas J. Appl. Phys. 103 073512 (2008)

    Article  ADS  Google Scholar 

  12. H M Baghramyan, M G Barseghyan, A A Kirakosyan and R L Restrepo J. Lumin. 145 676 (2014)

    Article  CAS  Google Scholar 

  13. R Khordad and H Bahramiyan Eur. Phys. J. Appl. Phys. 67 20402 (2014)

    Article  ADS  Google Scholar 

  14. R Khordad and H Bahramiyan Phys. E 66 107 (2015)

    Article  CAS  Google Scholar 

  15. E C Niculescu and C Stan J. Appl. Phys. 122 144301 (2017)

    Article  ADS  Google Scholar 

  16. N Amin and A J Peter Phys. B 631 413693 (2022)

    Article  CAS  Google Scholar 

  17. H El Ghazi, A Jorio and I Zorkani Phys. B 422 47 (2013)

    Article  ADS  CAS  Google Scholar 

  18. M Kirak and S Yilmaz J. Appl. Phys. 109 094309 (2011)

    Article  ADS  Google Scholar 

  19. B Cakir, Y Yakar, A Ozmen, M O Sezer and M Şahin Superlattices Microstruct. 47 556 (2010)

    Article  ADS  Google Scholar 

  20. R L Restrepo, A L Morales, J C Martínez-Orozco, H M Baghramyan, M G Barseghyan, M E Mora-Ramos and C A Duque Phys. B 453 140 (2014)

    Article  ADS  CAS  Google Scholar 

  21. G Rezaei Phys. 11 176 (2011)

    Google Scholar 

  22. K M Kumar, A J Peter and C W Lee Superlattices Microstruct. 51 184 (2012)

    Article  ADS  Google Scholar 

  23. A Yaseen J. Phys. 60 598 (2019)

    CAS  Google Scholar 

  24. M Elsaid Phys. Lett. B 33 1950422 (2019)

    CAS  Google Scholar 

  25. M K Elsaid, A Shaer, E Hjaz and M H Yahya Chin. J. Phys. 64 9 (2020)

    Article  CAS  Google Scholar 

  26. D Bejan and C Stan Phys. E 147 1155 (2023)

    Article  Google Scholar 

  27. O Akankan, I Erdogan and A I Mese J. Phys. 95 1341 (2021)

    CAS  Google Scholar 

  28. M Tshipa and G K Nkoni Indian J. Phys. 94 633 (2020)

    Article  ADS  CAS  Google Scholar 

  29. S Schmitt-Rink Phys. 38 89 (1989)

    CAS  Google Scholar 

  30. F Grillot and J Duan Appl. 10 156 (2021)

    CAS  Google Scholar 

  31. Y Yakar Phys. 513 213 (2018)

    CAS  Google Scholar 

  32. L Bouzaiene and H Alamri J. Alloys Compd. 655 172 (2016)

    Article  CAS  Google Scholar 

  33. G Rezaei, B Vaseghi, F Taghizadeh, M R K Vahdani and M J Karimi Superlattices Microstruct. 48 450 (2010)

    Article  ADS  CAS  Google Scholar 

  34. M J Karimi and G Rezaei Phys. B 406 4423 (2011)

    Article  ADS  CAS  Google Scholar 

  35. H El Ghazi, A Jorio and I Zorkani Superlattices Microstruct. 71 211 (2014)

    Article  ADS  Google Scholar 

  36. D Bejan, C Stan and E C Niculescu Opt. Mater. 78 207 (2018)

    Article  ADS  CAS  Google Scholar 

  37. L Máthé, C P Onyenegecha, A-A Farcaş and L-M Pioraş-Ţimbolmaş Hassanabadi Phys. Lett. A 397 127262 (2021)

    Article  Google Scholar 

  38. H M Baghramyan, M G Barseghyan, A A Kirakosyan and D Laroze in Physics of Quantum Rings edited by V M Fomin (Springer, 2018) p. 411–445

  39. S G Kosionis and E Paspalakis Micro Nanostruct. 175 207508 (2023)

    Article  CAS  Google Scholar 

  40. S Datta, B Bhakti, A Pal and M Ghosh J. Nonlin. Opt. Phys. Mater. (2023). https://doi.org/10.1142/S0218863523400027

    Article  Google Scholar 

  41. M Gambhir and P Kumar J. Phys. 97 2169 (2023)

    CAS  Google Scholar 

  42. S G Kosionis, A Kontakos and E Paspalakis Appl. Sci. 13 1160 (2023)

    Article  CAS  Google Scholar 

  43. S Yilmaz and H Şafak Phys. E 36 40 (2007)

    Article  CAS  Google Scholar 

  44. A Ozmen, Y Yakar, B Cakir and U Atav Opt. Commun. 282 3999 (2009)

    Article  ADS  Google Scholar 

  45. V A Holovatsky, O M Makhanets and O M Voitsekhivska Phys. E 41 1522 (2009)

    Article  CAS  Google Scholar 

  46. W Xie Phys. B 405 3436 (2010)

    Article  ADS  CAS  Google Scholar 

  47. S Abdi-Ben Nasrallah, A Bouazra, A Poncet and M Said Phys. E 43 146 (2010)

    Article  CAS  Google Scholar 

  48. B Bochorishvili Phys. E 43 874 (2011)

    Article  CAS  Google Scholar 

  49. Y Naimi and A R Jafari J. Comput. Electron. 11 414 (2012)

    Article  CAS  Google Scholar 

  50. A R Jafari, Y Naimi and S Davatolhagh Opt. Quant. Electron. 45 517 (2013)

    Article  CAS  Google Scholar 

  51. A Tiutiunnyk, V Tulupenko, M E Mora-Ramos, E Kasapoglu, F Ungan, H Sari, I Sökmen and C A Duque Phys. E 60 127 (2014)

    Article  CAS  Google Scholar 

  52. A R Jafari Phys. B 446 17 (2014)

    Article  ADS  CAS  Google Scholar 

  53. M Tshipa Indian J. Phys. 88 849 (2014)

    Article  ADS  CAS  Google Scholar 

  54. Y Yakar Phys. Lett. 708 138 (2018)

    CAS  Google Scholar 

  55. P Doba Phys. J. D 75 110 (2021)

    ADS  CAS  Google Scholar 

  56. A Fakkahi Phys. J. Plus 137 1068 (2022)

    Article  CAS  Google Scholar 

  57. F Rahimi and M R K Vahdani Opt. Quant. Electron. 55 106 (2023)

    Article  Google Scholar 

  58. G A Mantashian, N A Zaqaryan, P A Mantashyan, H A Sarkisyan, S Baskoutas and D B Hayrapetyan Atoms 9 75 (2021)

    Article  ADS  CAS  Google Scholar 

  59. O Aytekin, S Turgut, V U Ünal, E Akşahin and M Tomak Phys. E 54 257(2013)

    Article  CAS  Google Scholar 

  60. I Karabulut and E Paspalakis Phys. E 81 294 (2016)

    Article  CAS  Google Scholar 

  61. Z Zeng and C S Garoufalis J. Appl. Phys. 114 023510 (2013)

    Article  ADS  Google Scholar 

  62. M C Onyeaju, J O A Idiodi and A N Ikot J. Opt. 46 254 (2017)

    Article  Google Scholar 

  63. G Liu, K-X Guo, H Hassanabadi and L Lu Phys. B 407 3676 (2012)

    Article  ADS  CAS  Google Scholar 

  64. G Liu, K-X Guo, H Hassanabadi, L Lu and B H Yazarloo Phys. B 415 92 (2013)

    Article  ADS  CAS  Google Scholar 

  65. V U Ünal, M Tomak, E Akşahin and O Zorlu Prog Nanoscale Low-Dimens. Mater Dev. 144 709 (2022)

    Article  Google Scholar 

  66. E Ozturk and I Sökmen J. Lumin. 134 42 (2013)

    Article  CAS  Google Scholar 

  67. F Ungan, M K Bahar, M G Barseghyan, L M Pérez and D Laroze Optik 236 166621 (2021)

    Article  ADS  CAS  Google Scholar 

  68. D Altun, O Ozturk, B O Alaydin and E Ozturk Micro Nanostruct. 166 207225 (2022)

    Article  CAS  Google Scholar 

  69. F Ungan, M E Mora-Ramos, C A Duque, E Kasapoglu, H Sari and I Sökmen Superlattices Microstruct. 66 129 (2014)

    Article  ADS  CAS  Google Scholar 

  70. V Fock Z. Physik 47 446 (1928)

    Article  ADS  Google Scholar 

  71. C G Darwin Proc. Camb. Philos. Soc. 27 86 (1930)

    Article  ADS  Google Scholar 

  72. V Halonen, P Hyvönen, P Pietiläinen and T Chakraborty Phys. Rev. B 53 6971 (1996)

    Article  ADS  CAS  Google Scholar 

  73. V Halonen, P Pietiläinen and T Chakraborty Europhys. Lett. 33 337 (1996)

    Article  ADS  Google Scholar 

  74. A Hakimyfard, M G Barseghyan and A A Kirakosyan Phys. E 41 1596 (2009)

    Article  CAS  Google Scholar 

  75. A T Tuzemen, H Dakhlaoui and F Ungan Philos. Mag. 102 2428 (2022)

    Article  ADS  Google Scholar 

  76. H Dakhlaoui, W Belhadj, A S Durmuslar, F Ungan and A Abdelkader Phys. E 147 115623 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors B. B., S. D. and M. G. thank DST-FIST (Govt. of India) and UGC-SAP (Govt. of India) for support.We also express our sincere gratitude to Prof. M. K. Bahar, Department of Physics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey, for his valuable guidance.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to the paper.

Corresponding author

Correspondence to Manas Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakti, B., Datta, S. & Ghosh, M. Fine-tuning a few nonlinear optical properties of doped GaAs quantum dot by spatial spread of impurity under the aegis of noise. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03093-8

Keywords

Navigation