Skip to main content
Log in

Chemical bath deposition approach to produce three different morphologies of PbO thin films from different cation concentrations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, a facile chemical bath deposition process was used to prepare nanorods, nanosheets, and cauliflower PbO thin films from various cation molar concentrations. After being prepared at different molar concentrations, the as-deposited PbO thin films were annealed in a furnace at 400 °C. Subsequently, the PbO thin films were characterized using a variety of techniques. The XRD result demonstrates the presence of the β-PbO and α-PbO phases, with the β-PbO phase predominating. The average crystallite size of PbO thin film deposited at 0.1 M, 0.15 M, 0.2 M, and 0.25 M molar concentrations was 36.51 nm, 41.22 nm, 37.28 nm, and 40.38 nm, respectively. The UV–Vis spectroscopy result indicated that the optical bandgap of PbO thin films increased from 3.14 to 3. 81 eV as the lead molar concentrations varied from 0.1 to 0.25 M. The strong green emission band at the 523 nm region was shown by the PL spectroscopy. The coexistence of hexagonal nanorods, cauliflower, and networked nanosheet structures coated on the substrate’s surface is confirmed by the SEM surface morphology analysis. The existence of both Pb and O elements is confirmed by EDX analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Suganya Sci. Pol. 32 448 (2014)

    CAS  Google Scholar 

  2. V N Suryawanshi, A S Varpe and M D Deshpande Thin Solid Films 645 87 (2018)

    Article  ADS  CAS  Google Scholar 

  3. A O Mousa and A F Marmoss Int. J. ChemTech Res. 10 625 (2017)

    CAS  Google Scholar 

  4. C G Poll and D J Payne Electrochim. Acta 156 283 (2014)

    Article  Google Scholar 

  5. K Konstantinov, S H Ng, J Z Wang and G X Wang J. Power Sources 159 241 (2006)

    Article  ADS  CAS  Google Scholar 

  6. R Bapitha and M Alagar J. Adv. Chem. Sci. 3 499 (2017)

    Google Scholar 

  7. A Güngör, R Genç and T Özdemir J. Turkish Chem. Soc. Sect. A Chem. 4 1017 (2017)

    Article  Google Scholar 

  8. N Mythili and K T Arulmozhi Int. J. Sci. Eng. Res. 5 412 (2014)

    Google Scholar 

  9. F T Geldasa, M Kebede, M W Shura and D M Andoshe Scr 98 065701 (2023)

    Google Scholar 

  10. M H Eisa Mater. Sci. Semicond. Process. 110 104966 (2020)

    Article  CAS  Google Scholar 

  11. M Suganya, V Narasimman, J Srivind, V S Nagarethinam, A K Usharani and A R Balu J. Electr. Devices 21 1842 (2015)

    CAS  Google Scholar 

  12. J P Samberg Res. Bull. 51 356 (2014)

    Article  CAS  Google Scholar 

  13. F T Geldasa, M A Kebede, M W Shura and F G Hone AIP Adv. 12 115302 (2022)

    Article  ADS  CAS  Google Scholar 

  14. P Veluchamy and H Minoura Appl. Phys. Lett. 65 2431 (1994)

    Article  ADS  CAS  Google Scholar 

  15. J C Schottmiller J. Appl. Phys. 37 3505 (1966)

    Article  ADS  CAS  Google Scholar 

  16. M Salavati-Niasari F Mohandes and F Davar Polyhedron 28 2263 (2009)

    Article  CAS  Google Scholar 

  17. F T Geldasa and M A Kebede Phys. J. Plus 138 165 (2023)

    Article  CAS  Google Scholar 

  18. A B Gite Sci. Res. India 15 134 (2018)

    Article  Google Scholar 

  19. N Yu and L Gao Acta 54 3835 (2009)

    CAS  Google Scholar 

  20. A B Velichenko, E A Baranova, D V Girenko and R Amadelli Oper. Res. 97 131 (2000)

    Article  Google Scholar 

  21. R Naeem, R Yahya and A Pandikumar J. Mater. Sci. Mater. Electron. 28 868 (2017)

    Article  CAS  Google Scholar 

  22. J Harjuoja and A Kosola M Putkonen and L Niinisto Thin Solid Films 496 346 (2006)

    Article  ADS  CAS  Google Scholar 

  23. L M Droessler Lett. 71 51 (2012)

    CAS  Google Scholar 

  24. G Hodes Phys. Chem. Chem. Phys. 9 2181 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. A Ashok, G Regmi, A Romero-Núñez and M Solis-López J. Mater. Sci. Mater. Electron. 31 7499 (2020)

    Article  CAS  Google Scholar 

  26. F G Hone and F B Dejene Mater. Res. Express 5 026409 (2018)

    Article  ADS  Google Scholar 

  27. S K Shaikh and S I Inamdar J. Alloys Compd. 664 242 (2016)

    Article  CAS  Google Scholar 

  28. A C Nwanya, P E Ugwuoke and B A Ezekoye Mater. Sci. Eng. 2013 2 (2013)

    Google Scholar 

  29. M I Pintor-Monroy, M Cota-Leal, D Cabrera-German and A Garzon-Fontecha Sci. Semicond. Process 72 37 (2017)

    Article  Google Scholar 

  30. D D Eya Open Internet J 17 10 (2006)

    Google Scholar 

  31. M O Nwodo, S C Ezugwu and F I Ezema J. Chem. 3 95 (2011)

    Google Scholar 

  32. K Momma and F Izumi J. Appl. Crystallogr 44 1272 (2011)

    Article  ADS  CAS  Google Scholar 

  33. R J Hill Acta Crystallogr. 41 1281 (1985)

    Google Scholar 

  34. C J Humphreys Acta Cryst. 69 45 (2012)

    Article  Google Scholar 

  35. K P S Ramaswamy and M Shkir J. Mater. Sci. Mater. Electron. 31 1817 (2019)

    Google Scholar 

  36. M Shkir, I M Ashraf, S Alfaify and A M El-toni Int. 46 4652 (2019)

    Google Scholar 

  37. F G Hone and F B Dejene Inorg. Chem. Commun. 111 107583 (2019)

    Article  Google Scholar 

  38. H D Jang and J Jeong Aerosol Sci. Technol. 23 553 (1995)

    Article  ADS  CAS  Google Scholar 

  39. Y Wang, R Gao, H Zhao, J Li and R Zhang J. Am. Ceram. Soc. 106 1050 (2023)

    Article  CAS  Google Scholar 

  40. M Cheraghizade Phys. A Mater. Sci. Process. 123 9 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Fekadu Gashaw acknowledges Addis Ababa University for funding his thematic research project (Grant Ref. LT/PY-242/2021). Dr. Mesfin Kebede also thanks the National Research Foundation for their support, which was provided under grant number 129269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fekadu Gashaw Hone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geldasa, F.T., Kebede, M.A., Werta, S.Z. et al. Chemical bath deposition approach to produce three different morphologies of PbO thin films from different cation concentrations. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03083-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03083-w

Keywords

Navigation