Skip to main content
Log in

Tailoring optical and electrical properties of ternary Pb1−xCoxS thin films synthesized from a combination of two complexing agents

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Chemical bath deposition technique was used to synthesized Pb1−xCoxS compounds at a bath temperature of 75 °C by using double complexing agents. The thin films were characterized by varies of techniques. The XRD study confirmed that all the prepared thin films had face-center cubic crystal structure and the crystalline oriented along the (111) plane irrespective of cobalt concentrations. The XRD results further revealed that cobalt incorporation had a considerable effect on the intensity and position of the diffraction peaks. The SEM and HRTEM analyses justified that the surface morphology of Pb1−xCoxS thin films was strongly dependent on the amount of the dopant. The presence of Co, S and Pb elements in the prepared compounds was established by the EDX analyses. The UV–Vis study demonstrated that the band gap values of Pb1−xCoxS films engineered from 0.80 to 1.50 eV by varying cobalt doping concentrations. Furthermore, the refractive index, dielectric constant and linear optical susceptibility were calculated using the energy band gap values. The dc-two point probe measurement verified that the electrical properties of the Pb1−xCoxS thin films were considerably changed by the cobalt doping concentrations and the thermal activation energies were found in the range of 0.587–0.976 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S B Pawar, J S Shaikh, R S Devan, Y R Ma, D Haranath, P N Bhosale, et alAppl. Surf. Sci. 258 1869 (2011).

  2. F G Hone, F B Dejene Mater. Res. Express 5 026409 (2018).

    Article  ADS  Google Scholar 

  3. [S M Salim, O Hamid Renew. Energ. 24 575 (2001).

    Article  Google Scholar 

  4. S T Navale, D K Bandgar, M A Chougule, V B Patil RSC Adv. 5 6518 (2015).

    Article  ADS  Google Scholar 

  5. K C Preetha, K V Murali, A J Ragina, K Deepa, T L Remadevi Curr. Appl. Phys. 1253 (2012).

    Article  ADS  Google Scholar 

  6. M Biton, A Shamir, M Shandalov, N Vosk, A Sa'ar, E Yahel, et al Thin. Solid Films 556(2014).

  7. A Stavrinadis, D So, G Konstantatos J. Phys. Chem. C 120 20315 (2016).

  8. S N Sahu, K K Nanda PINSA 67 103 (2001).

    Google Scholar 

  9. M Bouroushian Electrochemistry of Metal Chalcogenides. New York: Springer 50 (2010).

  10. O P Moreno, R G Perez, M C Portillo, M N Marquez Specia, G H Tellez, M L Hernandez et al REV MEX FIS 62 456 (2016).

  11. R Das, R Kumar Mater. Res. Bull. 239 (2012).

  12. C Rajashree, A R Balu Optik 127 8892 (2016).

    Article  ADS  Google Scholar 

  13. S Ravishankar, A R Balu, K Usharani, S Balamurugan, D Prabha, V S Nagarethinam Optik 134 121 (2017).

    Article  ADS  Google Scholar 

  14. Xiaoyao Zheng, Fei Gao, Fangxu Ji, Huijun Wu, Junshan Zhang, Xihong Hu et al Mater Lett. 167 128 (2016).

  15. Ersin Yücel, Y Yücel Ceram. Int. 43 407 (2017).

    Article  Google Scholar 

  16. S Thangavel, S Ganesan, S Chandramohan, P Sudhagar, Y S Kang, C H Hong J. Alloys Compd. 495 234 (2010).

    Article  Google Scholar 

  17. B Touati, A Gassoumi, N K Turki J. Mater. Sci: Mater. Electron 28 18387 (2017).

    Google Scholar 

  18. A Badawi Superlattices Microstruct. 125 237 (2019).

  19. E Veenaa, K V Bangeraa, G K Shivakumarb Optik 144 528 (2017).

    Article  ADS  Google Scholar 

  20. F G Hone, F K Ampong, R K Nkum, F Boakye J. Mater. Sci: Mater. Electron 28 2893 (2017).

    Google Scholar 

  21. F G Hone, F K Ampong Mater. Chem. Phys. 183 320 (2016).

    Article  Google Scholar 

  22. R Xie, J Su, Y Liu, L Guo Int. J. Hydrog. Energy 39 3517 (2014).

    Article  Google Scholar 

  23. Swanson, Fuyat Natl Bur Stand (U S) 539 (1953).

  24. S Thangavel, S Ganesan, K Saravanan Thin Solid Films 5206 (2012).

  25. O P Moreno, R G Pérez, R P Merino, M C Portillo, G H Téllez, E R Rosas Thin Solid Films 616 800 (2016).

    Article  ADS  Google Scholar 

  26. Y Gulen Metall. Trans. A 46A 4698 (2015).

  27. B Touati, A Gassoumi, S Alfaify, K N Turki Mater. Sci. Semicond. Process 34 82 (2015).

    Article  Google Scholar 

  28. A S Hassanien, A A Akl Superlattices Microstruct. 89 153 (2016).

    Article  ADS  Google Scholar 

  29. F Stern Solid. State. Phys. 15 299 (1963).

  30. S R Shankar, A R Balub, M Anbarasi, V S Nagarethinam Optik 126 2550 (2015).

    Article  ADS  Google Scholar 

  31. B J Baruah, K C Sarma J. Mater. Sci: Mater. Electron 28 5913 (2017).

    Google Scholar 

  32. A Gassoumi, S Alleg, N KTurki J. Mol. Struct. 1116 67 (2016).

    Article  ADS  Google Scholar 

  33. B Touati, A Gassoumi, C Guasch, N K Turki Mater. Sci. Semicond. Process 67 20 (2017).

    Article  Google Scholar 

  34. R Kumar, R. Das, M Gupta, V Ganesan Superlattices Microstruct. 75601 (2014).

    Article  ADS  Google Scholar 

  35. B Singh, J Singh, J Kaur, R K Moudgil, S K Tripathi Physica B 490 49 (2016).

    Article  ADS  Google Scholar 

  36. T S Shyju, S Anandhi, R Sivakumar, S K Garg, R Gopalakrishnan J. Cryst. Growth 353 47 (2012).

    Article  ADS  Google Scholar 

  37. K S Tripathy, A Pattanaik Opt. Mater. 53 123 (2016).

    Article  ADS  Google Scholar 

  38. N M Ravindra, P Ganapathy, Choi Infrared Phys. Technol 50 21 (2007).

    Article  ADS  Google Scholar 

  39. S K Tripathy Opt. Mater. 46 240 (2015).

  40. S Ahmad, M Ashraf, A Ahmad, D V Singh Arab. J. Sci. Eng. 38 1889 (2013).

    Article  Google Scholar 

  41. S F Yao, X T Chen, H M Ye J. Phys. Chem. B. 121 9476 (2017).

    Article  Google Scholar 

  42. D Patidar, K S Rathore, N S Saxena, K Sharma, T P Sharma Chalcogenide Lett. 21(2008).

  43. K S Kumar, A. G Manohari, Chaogang Lou, T. Mahalingam, S Dhanapandian Vacuum 128226 (2016).

  44. B Touati, A Gassoumi, I Dobryden, M Maria Natile, A Vomiero, N K Turki Superlattices Microstruct. 97 519 (2016).

Download references

Acknowledgment

The authors are gratefully for Prof. R. Kroon and Prof. H. C. Swart to support us for the characterization equipments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Hone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hone, F.G., Dejene, F.B. & Koao, L.F. Tailoring optical and electrical properties of ternary Pb1−xCoxS thin films synthesized from a combination of two complexing agents. Indian J Phys 95, 1763–1773 (2021). https://doi.org/10.1007/s12648-020-01860-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01860-x

Keywords

Navigation