Skip to main content
Log in

Optical properties of electron beam evaporated Zn1−XTiXO thin films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present study deals with synthesis and characterizations of titanium (Ti) doped zinc oxide (Zn1−xTixO) thin films using an electron beam evaporation technique. The Zn1−xTixO thin films were prepared at different titanium concentrations (x = 0. 00, 0.01, 0.05 and 0.07) and studied the role of Ti concentration on structural, morphological, optical, photoluminescence, magnetic and electrical properties. The Zn1−xTixO thin films were subjected to XRD, SEM, AFM, UV–Vis–NIR, PL, VSM and I–V characterization techniques. From these characterizations it was found that the Zn1−xTixO thin films were in wurtzite hexagonal structure with smooth surface. An increase in optical band gap (3.01 eV – 3.13 eV) and a decrease in crystallite size (25–19 nm) were observed with increase of Ti concentration (x = 0.00 to x = 0.07). The films exhibit luminescence property and clear emission peaks were observed in PL spectra in visible region. From I-V studies, ohmic behavior was observed for the Zn1−xTixO thin films. Magnetic studies were carried out at room temperature and confirmed the paramagnetic nature of the Zn1−xTixO thin films. From the optical transmittance, absorbance spectra of the Zn1−xTixO thin films, the optical parameters such as refractive index, extinction coefficient, energy band gap, Urbach energy, optical conductivity, dispersion parameter, static refractive index, linear and non-linear susceptibility were calculated and explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. X Xu and C Cao J. Alloys Compd. 501 265 (2010)

    Article  Google Scholar 

  2. V Mukta Limaye, B Singh, Raja Das, Pankaj Poddar and K Sulabha Kulkarni J. Solid State Chem. 184 391 (2011)

  3. G Z Xing, J B Yi, D D Wang, L Liao, T Yu, Z X Shen and C H A Huan Rev. B. 79 174406 (2009)

    Article  Google Scholar 

  4. M Peiteado J. Solid State Chem. 180 2459 (2007)

    Article  ADS  Google Scholar 

  5. S J Pearson, D P N Orton and K Ip Mater. Sci. 50 293 (2005)

    Google Scholar 

  6. Y Liu, W Luo and R Li Express 17 9748 (2009)

    Article  ADS  Google Scholar 

  7. B Roy, S Chakrabarty and O Mondal Charact. 70 1 (2012)

    Article  Google Scholar 

  8. S Kumar, P Kaur, C L Chen, R Thangavel, C L Dong, Y K Ho, J F Lee and T S Chan J. Alloys Compd. 588 705 (2014)

    Article  Google Scholar 

  9. R Mimouni J. Alloys Compd. 624 189 (2015)

    Article  Google Scholar 

  10. A Y Polyakov, A V Govorkov and N B Smirnov Mater. Sci. Semicond. Process 7 77 (2004)

    Article  Google Scholar 

  11. S Kumar, Y J Kim, B H Koo, S Gautam and K H Chae Mater. Lett. 63 194 (2009)

    Article  Google Scholar 

  12. S A Wolf, D D Awschalom, R A Buhrman, Y Chtchel kanova and D M Treger, Science 294 1488 (2001)

    Article  ADS  Google Scholar 

  13. S H Jeong, B S Kim and B T Lee Appl. Phys. Lett. 82 2625 (2003)

    Article  ADS  Google Scholar 

  14. X Y Kong and Z L Wang Nano Lett. 3 1625 (2003)

    Article  ADS  Google Scholar 

  15. O I Lupan, S T Shishiyanu and T S Shishiyanu Superlattice Microstruct. 42 375 (2007)

    Article  ADS  Google Scholar 

  16. D I Suh, S Y Lee, T H Kim, J M Chun and E K Suh Phys. Lett. 442 348 (2007)

    Google Scholar 

  17. X Q Gu, L P Zhu, Z Z Ye, H P He, Y Z Zhang and B H Zhao Thin Solid Films 517 5134 (2009)

    Article  ADS  Google Scholar 

  18. Chung Ping Liu and Gwo Rou Jeng J. Alloys Compd. 468 343 (2009)

  19. L P Peng, L Fang, X F Yang, Y J Li, Q L Huang, F Wu and C.Y. Kong J. Alloys Compd. 484 575 (2009)

  20. Mihaela Girtan, G G Rusu, Sylvie Dabos-Seignon and Mihaela Rusu Appl. Surf. Sci. 254 4179 (2008)

    Article  ADS  Google Scholar 

  21. V Gandhi and R Ganesan Mahalingam J. Phys. Chem. C 118 9715 (2014)

    Article  Google Scholar 

  22. F Moosavi, M E Bahrololoom, R Kamjou, A Mirzaei S G Leonardi and G Neri Chemosensors 6 61 (2018)

    Article  Google Scholar 

  23. B. D Cullity and S R Stock Elements of X-ray Diffraction, (New York :Prentice Hall) (2001)

  24. Z H Shah, S Riaz, Z N Kalyani and S Naseem The 2016 World congress on advances in civil (ACEM’16) (2017)

  25. K C Kumar and S Kaleemulla Magn. 32 1725 (2019)

    Google Scholar 

  26. Chen-Hui zhai, Rong-Jun Zhang, Xin Chen, Yu-Xiang Zheng Nanoscale res. Lett. 11 1 (2016)

  27. Irzaman, H Darmasetiawan, H Hardhienata, M Hikam, P Arifin, S N Jusoh, S Taking, Z Jamal and M A Idris, Atom Indonesia 35 57 (2009)

  28. Srijita Naudy and Aritra Ghosh ACS Appl. Mater. Interfaces 13 25540 (2021)

    Article  Google Scholar 

  29. S Sebastian, I Kulandaisamy, S Valanarasu and J Mater Sc Mater. Elect. 30 8024 (2019)

    Article  Google Scholar 

  30. Nafiseh Memarian Status Solidi C 9 2277 (2010)

    Article  Google Scholar 

  31. J Tauc Amorphous and Liquid Semiconductors (New York: Plenum) 159, Ch 4 (1974)

  32. I Hamberg and C G Granqvist Phys. Rev. B 30 3240 (1984)

    Article  ADS  Google Scholar 

  33. S C Jain J. Appl. Phys. 68 3747 (1990)

    Article  ADS  Google Scholar 

  34. R Milen, Nenkov, G Tamara and Pencheva Cent. Eur. J Phys. 6 332 (2008)

    Google Scholar 

  35. S Havlova, M Novotny, P Fitl and J More-Chevailer J. Mater. Sci. 56 11414 (2021)

    Article  ADS  Google Scholar 

  36. Karuppasamy Pichan, Senthil Pandian Muthu and Ramasamy Perumalsamy Sc Mater. Elect. 473 39 (2017)

    Article  ADS  Google Scholar 

  37. M Peer Mohamed, S Sudhaa and P Jayaprakash Chinese J. Phys. 60 581 (2019)

  38. S Prince Soc. 51 1639 (2022)

    Google Scholar 

  39. Laya Dejam, Slawomir Kulesza and Atefeh Ghaderi Results Phys. 44 106209 (2023)

    Article  Google Scholar 

  40. Akshaya kumar Kompa Chem. Phys. 299 127507 (2023)

    Google Scholar 

  41. K A Aly, A M Abd Elnaeim and M A M Uosif Physica B 406 4227 (2011)

    Article  ADS  Google Scholar 

  42. L Tichy, H Ticha, P Nagels and R Callaerts Lett. 39 122 (1999)

    Google Scholar 

  43. P Karuppasamy Mater. 79 152 (2018)

    Google Scholar 

  44. A M Aslaad, Q M Al-Bataineh, A A Ahmad Z Albataineh and A Telfah Optik 211 164641 (2020)

    Article  ADS  Google Scholar 

  45. A S Abouhaswa and H M Abomostafa Polym. Bull. 1 (2023)

  46. Nannan Bi, Lei Zhang, Qiang Zheng and Fei Zhuge J. Mater. Sci. Technol. 33 850 (2017)

    Article  Google Scholar 

Download references

Funding

No funds, grants or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaleemulla.

Ethics declarations

Conflict of interest

The Authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauline, G.S., Kaleemulla, S. Optical properties of electron beam evaporated Zn1−XTiXO thin films. Indian J Phys 98, 2163–2179 (2024). https://doi.org/10.1007/s12648-023-02991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02991-7

Keywords

Navigation